• Title/Summary/Keyword: Rayleigh's method

Search Result 192, Processing Time 0.025 seconds

Vibration Analysis of Annular Plate Combined Cylindrical Shells Considering Additional Deformations (추가변형을 고려한 환원판 결합 원통셸의 진동해석)

  • Kim, Young-Wann;Chung, Kang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.551-556
    • /
    • 2004
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.

  • PDF

Design of Downlink Beamformer for High-quality.High-speed Wireless Multimedia Services (고품질.고속 무선 멀티미디어 서비스를 위한 송신 빔 형성기 설계)

  • 이용주;양승용;김기만
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.459-464
    • /
    • 2001
  • We propose a transmit beamforming algerian for array antenna in FDD (Frequency Division Duplex) environments. The proposed method estimates the directions and spectra of the users, and constructs the spatial covariance matrix of the interferences at the downlink frequency. The weights are computed by that covariance matrix and desired user's direction vector Simulations are performed under Rayleigh fading environments. The proposed method don't need the data feedback, has the enhanced performance in BER (Bit Error Rate).

  • PDF

Numerical Study of Unsteady Mixed Convection in a Cavity with High Viscous Fluid (캐비티 내 고 점성유체의 비정상 흔합대류에 관한 수치해석적 연구)

  • Bae, D.S.;Cai, Long Ji
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.11-17
    • /
    • 2009
  • A numerical study of unsteady mixed convection in a cavity with high viscous fluid is presented. Finite volume method was employed for the discretization and PISO algorithm was used for calculating pressure term. The parameters governing the problem are the Rayleigh number ($10^3\;{\leq}\;Ra\;{\leq}\;10^5$), the Reynolds number (0 < Re $\leq$ 1), and the aspect ratio (0.5 $\leq$ AR $\leq$ 2). The fluid used is silicon oil, a high prandtl number fluid, Pr = 909.1. The results show velocity vectors and temperature distributions. It is found that the periodic flows in a cavity are observed at very low Reynolds numbers, and the period of periodic flow decreases with increasing Reynolds and Rayleigh numbers, and increases with increasing aspect ratio. Also, the Reynolds number range of periodic flow increases with increasing Rayleigh numbers and aspect ratio.

  • PDF

Free Vibration Analysis of the Scroll Compressor Housing by Shell Theory (셸이론을 이용한 스크롤 압축기 하우징의 자유진동해석)

  • Kim, H.S.;Lee, Y.S.;Yang, M.S.;Choi, M.H.;Ryu, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.242-247
    • /
    • 2000
  • In this study, the Rayleigh's energy method and the Rayleigh-Ritz method on the basis of Flugge's shell theory was used to analyze the dynamic characteristics of the scroll compressor housing with clamped boundary condition. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. In order to validate the theory, modal test was also performed by impact test and FFT analysis.

  • PDF

Effect of the Vibration Modes on the Radiation Sound for Plate (강판의 진동모드를 고려한 방사음 예측에 관한 연구)

  • Kim Chang-Nam;Byun Young-Su;Kim Jeong-Man;Kim Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • In order to compute the radiated sound from a vibrating structure, the Rayleigh's integral equation has to be derived from the Helmholtz equation using Green's function. Generally, the surface velocity in the Rayleigh's integral equation uses the root mean square(rms) velocity. The calculation value is too large, because it's not considered cancelation. On the other hand. using the complex velocity, the sound pressure is calculated too small, because it considers that sound is perfectly canceled out. Therefore, this thesis proposes a correction factor(CF) which considers vibration modes and the method by which to calculate the radiating sound pressure. The theoretical results are compared with the experimental values, and the proposed method can be verified with confluence.

Vibration of Rectangular Plates (직사각형판(直四角形板)의 진동해석(振動解析))

  • Keuck-Chun,Kim;Tae-Young,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 1977
  • The major objects of this report are to supplement data of natural frequencies of thin elastic rectangular plates to the available data, and to give an experimental verification for natural frequencies obtained by Rayleigh-Ritz method, the generation set of which are eigenfunctions of Euler beams. For the first object the following five models, for which data only for the fundamental mode or data only for square plates are available, are adopted; (1) two opposed edges are clamped and the other two opposed edges simply supported (C-C, S-S), (2) one edge is simply supported and the other three edges clamped (C-C, C-S), (3) one edge is free and the other three edges clamped (C-C, C-F), (4) two adjacent edges are clamped and the other two adjacent edges free (C-F, C-F). For the (C-C, S-S) model the frequency equation obtained with the mode shapes assumed as of a single trigonometric series is solved. And for the other four models Rayleigh-Ritz method taking eigenfunctions of Euler beams as the generating set is applied. The numerical examples are obtained up to the fourth, the fifth or the sixth order depending on the range of the aspect ratio (0.1-10.0). The number of terms in the generating set for Rayleigh-Ritz method is fifteen for all models. For the experiment three models made of 3.2mm thickness mild steel plate for general structure use were prepared in following size; $300mm{\times}600mm,\;600mm{\times}600mm\;and\;900mm{\times}600mm$. Their boundary conditions are made to fit (C-C, C-F) condition. From the experiment mechanical impedance curves based on the frequency response method were obtained together with phase relation diagrams. The experimental data are resulted in good conformity to calculated values.

  • PDF

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Wonju, Korea (레일리파 분산을 역산하여 구한 횡파속도를 이용한 원주시의 부지특성)

  • Kim, Chungho;Ali, Abid;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • To reveal shear-wave velocities ($v_s$) and site characterization of Wonju, Korea, Rayleigh waves were recorded at 78 sites of lower altitude using 12 to 24 4.5-Hz vertical geophones for 20 days during the period of February to September 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted using the damped least-squares method to derive $v_s$ models. From these 1-D models, the average $v_s$ to a depth of 30 m ($v_s30$), $v_s$ of weathered rocks, depths to these basement rocks, and average $v_s$ of the overburden layer were derived to be $16.3{\pm}0.7m$, $576{\pm}8m/s$, $290{\pm}7m/s$, and $418{\pm}13m/s$, respectively, in the 95% confidence range. To determine adequate proxies for $v_s30$, we computed correlation coefficients of $v_s30$ with topographic slope (r = 0.46) and elevation (r = 0.43). An empirical linear relationship is presented as a combination of individually estimated $v_s30$ with weighting factors of 0.45, 0.45, and 0.1 for topographic slope, elevation, and mapped lithology, respectively. Due to a weak correlation between $v_s30$ obtained from inversion of dispersion curves and the proxy-based estimation (r = 0.50), however, the relatively large error range should be considered for applications of this relationship.

DISPERSION OF RAYLEIGH WAVES IN THE KOREAN PENINSULA (한반도의 레일리파 분산에 대한 연구)

  • Cho Kwang-hyun;Lee Kiehwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.29-36
    • /
    • 2005
  • The crustal structure of Korean Peninsula is investigated by analyzing phase velocity dispersion data of Rayleigh wave. Earthquakes recorded by three component seismographs during 1999 - 2004 in South Korea are used in this study. The fundamental mode signals of Rayleigh waves are obtained from vertical components of seismograms by multiple filter technique method and phase match filter method. Velocity dispersion curves of surface waves for 14 propagation paths on the great circle are computed from the fundamental mode signals on the great circle path by two-station method. Treating the shear velocity of each layer as an independent parameter, phase velocities of Rayleigh wave are inverted. The result models are regarded as average structure for surface wave propagation paths respectively. All the results can be explained by an earth model of the Korean Peninsula comprising crust of shear-wave velocity increasing from 2.8 to 3.25 km/sec from top to 33 km depth and uppermost mantle of shear-wave velocity between 4.55 and 4.67 km/sec.

  • PDF

Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.215-228
    • /
    • 2020
  • In this paper, a new method based on the Sander theory is developed for SWCNTs to predict the vibrational behavior of length and ratio of thickness-to-radius according to various end conditions. The motion equation for this system is developed using Rayleigh-Ritz's method. The proposed model shows the vibration frequencies of armchair (5, 5), (7, 7), (9, 9), zigzag (12, 0), (14, 0), (19, 0) and chiral (8, 3), (10, 2), (14, 5) under different support conditions namely; SS-SS, C-F, C-C, and C-SS. The solutions of frequency equations have been given for different boundary condition, which have been given in several graphs. Several parameters of nanotubes with characteristic frequencies are given and vary continuously in length and ratio of thickness-to-radius. It has been illustrated that an enhancing the length of SWCNTs results in decreasing of the frequency range. It was demonstrated by increasing of the height-to-radius ratio of CNTs, the fundamental natural frequency would increase. Moreover, effects of length and ratio of height-to-radius with different boundary conditions have been investigated in detail. It was found that the fundamental frequencies of C-F are always lower than that of other conditions, respectively. In addition, the existence of boundary conditions has a significant impact on the vibration of SWCNTs. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.