Browse > Article
http://dx.doi.org/10.12989/anr.2020.8.3.215

Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method  

Hussain, Muzamal (Department of Mathematics, Government College University Faisalabad)
Naeem, Muhammad Nawaz (Department of Mathematics, Government College University Faisalabad)
Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Tounsi, Abdelouahed (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Algeria Faculty of Technology, Civil Engineering Department)
Publication Information
Advances in nano research / v.8, no.3, 2020 , pp. 215-228 More about this Journal
Abstract
In this paper, a new method based on the Sander theory is developed for SWCNTs to predict the vibrational behavior of length and ratio of thickness-to-radius according to various end conditions. The motion equation for this system is developed using Rayleigh-Ritz's method. The proposed model shows the vibration frequencies of armchair (5, 5), (7, 7), (9, 9), zigzag (12, 0), (14, 0), (19, 0) and chiral (8, 3), (10, 2), (14, 5) under different support conditions namely; SS-SS, C-F, C-C, and C-SS. The solutions of frequency equations have been given for different boundary condition, which have been given in several graphs. Several parameters of nanotubes with characteristic frequencies are given and vary continuously in length and ratio of thickness-to-radius. It has been illustrated that an enhancing the length of SWCNTs results in decreasing of the frequency range. It was demonstrated by increasing of the height-to-radius ratio of CNTs, the fundamental natural frequency would increase. Moreover, effects of length and ratio of height-to-radius with different boundary conditions have been investigated in detail. It was found that the fundamental frequencies of C-F are always lower than that of other conditions, respectively. In addition, the existence of boundary conditions has a significant impact on the vibration of SWCNTs. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.
Keywords
Rayleigh's method; Sander's shell theory; carbon nanotubes; MATLAB;
Citations & Related Records
Times Cited By KSCI : 37  (Citation Analysis)
연도 인용수 순위
1 Robertson, D.H., Brenner, D.W. and Mintmire, J.W. (1992), "Energetics of nanoscale graphitic tubule", Phys. Rev. B, 45, 12592. https://doi.org/10.1103/PhysRevB.45.12592   DOI
2 Sakhaee-Pour, A., Ahmadian, M.T. and Vafai, A. (2009), "Vibrational analysis of single-walled carbon nanotubes using beam element", Thin-Wall. Struct., 47(6), 646-652. https://doi.org/10.1016/j.tws.2008.11.002   DOI
3 Sanchez-Valencia, J.R., Dienel, T., Groning, O., Shorubalko, I., Mueller, A., Jansen, M., Amsharov, K., Ruffieux, P. and Fasel, R. (2014), "Controlled synthesis of single-chiral carbon nanotubes", Nature, 512, 61-64.   DOI
4 Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
5 Shakouri, A., Lin, R. and Ng, T. (2009), "Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method", J. Appl. Phys., 106(9), 094307. https://doi.org/10.1063/1.3239993   DOI
6 Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234   DOI
7 El-sherbiny, S.G., Wageh, S., Elhalafawy, S.M. and Sharshar, A.A. (2013), "Carbon nanotube antennas analysis and applications", Adv. Nano Res., Int. J., 1(1), 13-17. https://doi.org/10.12989/anr.2013.1.1.013   DOI
8 Eltaher, M.A., Almalki T.A., Ahmed K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039   DOI
9 Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109   DOI
10 Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203   DOI
11 Flugge, W. (1962), Stresses in Shells, (2nd edition), Springer-Verlag, Berlin, Germany.
12 Forsberg, K. (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Am. Inst. Aeronaut. Astronaut., 2, 182-189. https://doi.org/10.2514/3.55115   DOI
13 Ghavanloo, E. and Fazelzadeh, S.A. (2012), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", Appl. Mathe. Model., 36(10), 4988-5000. https://doi.org/10.1016/j.apm.2011.12.036   DOI
14 Grupta, S.S. and Barta, R.C. (2008), "Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes", Computat. Mater. Sci., 43, 715-723. https://doi.org/10.1016/j.commatsci.2008.01.032
15 Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0   DOI
16 Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003   DOI
17 Smalley, R.E., Li, Y., Moore, V.C., Price, B.C., Colorado, Jr, R., Schmidt, H.K., Hauge, R.H., Barron, A.R. and Tour, J.M. (2006), "Single wall carbon nanotube amplification: En route to a typespecific growth mechanism", J. Am. Chem. Soc., 128, 15824-15829. https://doi.org/10.1021/ja065767r   DOI
18 Soltani, P., Saberian, J. and Bahramian, R. (2016), "Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory", J. Computat. Nonlinear Dyn., 11(1), 011002. https://doi.org/10.1115/1.4030753   DOI
19 Tserpes, K.I. and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B: Eng., 36, 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003   DOI
20 Tu, Z.C. and Ou-Yang, Z.C. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number", Phys. Rev. B., 65, 233407. https://doi.org/10.1103/PhysRevB.65.233407   DOI
21 Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Physical Review B, 68(16), 165401. https://doi.org/10.1103/PhysRevB.68.165401   DOI
22 Wang, C.Y. and Zhang, L.C. (2007), "Modeling the free vibration of single-walled carbon nanotubes", Proceedings of the 5th Australasian Congress on Applied Mechanics, ACAM, Brisbane, Australia, pp. 10-12.
23 Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: instabilities beyond linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511   DOI
24 Han, J., Globus, A., Jaffe, R. and Deardorff, G. (1997), "Molecular dynamics simulations of carbon nanotube-based gears", Nanotechnology, 8(3), 95. https://doi.org/10.1088/0957-4484/8/3/001   DOI
25 Wang, Q., Xu, F. and Zhou, G.Y. (2005), "Continuum model for stability analysis of carbon nanotubes under initial bend", Int. J. Struct. Stabil. Dyn., 5(4), 579-595. https://doi.org/10.1142/S0219455405001738   DOI
26 Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294(4), 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005   DOI
27 Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7(4), 399-407. https://doi.org/10.1243/JMES_JOUR_1965_007_062_02   DOI
28 Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
29 Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E: Low-dimens. Syst. Nanostruct., 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035   DOI
30 Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of singlewalled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 89-106.
31 Zhao, Q., Gan, Z. and Zhuang, Q. (2002), "Electrochemical sensors based on carbon nanotubes", Electroanalysis, 14(23), 1609-1613. https://doi.org/10.1002/elan.200290000   DOI
32 Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010   DOI
33 Hersham, M.C. (2008), "Progress towards monodisperse singlewalled carbon nanotubes", Nature Nanotech., 3, 387-394.   DOI
34 Hong., B.H., Small J.P., Purewal, M.S., Mullokandov, A., Sfeir, M.Y., Wang, F., Lee, J.Y., Heinz, T.F., Brus, L.E., Kim, P. and Kim, K.S. (2005), "Extracting subnanometer single shells from ultralong multiwalled carbon nanotubes", Proceedings of the National Academy of Sciences, 102, 14155-14158. https://doi.org/10.1073/pnas.0505219102   DOI
35 Hsu, J.C., Chang, R.P. and Chang, W.J. (2008), "Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory", Physics Lett. A, 372(16), 2757-2759. https://doi.org/10.1016/j.physleta.2008.01.007   DOI
36 Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017   DOI
37 Hussain, M. and Naeem, M.N. (2018a), "Effect of various edge conditions on free vibration characteristics of rectangular plates", Chapter, Intechopen, Advance Testing and Engineering. ISBN 978-953-51-6706-8
38 Harik, V.M. (2002), "Mechanics of carbon nanotubes: applicability of the continuum-beam models", Comput. Mater. Sci., 24, 328-342. https://doi.org/10.1016/S0927-0256(01)00255-5   DOI
39 Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., Int. J., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125
40 Hussain, M. and Naeem, M. (2018b), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Chapter, Intechopen, Novel Nanomaterials - Synthesis and Applications. ISBN 978-953-51-5896-7 https://doi.org/10.5772 /intechopen.73503
41 Hussain, M. and Naeem, M.N. (2019d), "Vibration Characteristics of Single-Walled Carbon Nanotubes Based on Nonlocal Elasticity Theory Using Wave Propagation Approach (WPA) Including Chirality", In: Perspective of Carbon Nanotubes, IntechOpen. https://doi.org/10.5772/intechopen.85948
42 Akbas, S.D. (2016a), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143
43 Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579   DOI
44 Hussain, M. and Naeem, M.N. (2019a), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos.: Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144   DOI
45 Hussain, M. and Naeem, M.N. (2019b), "Vibration characteristics of zigzag and chiral functionally graded material rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095   DOI
46 Hussain, M. and Naeem, M. (2019c), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Mathem. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039   DOI
47 Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Advances, 7(4), 045114. https://doi.org/10.1063/1.4979112   DOI
48 Akbas, S.D. (2017b), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X   DOI
49 Akbas, S.D. (2016c), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125   DOI
50 Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009   DOI
51 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431   DOI
52 Hussain, M., Naeem, M., Shahzad, A. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Chapter, Intechopen, Computational Fluid Dynamics. ISBN 978-953-51-5706-9 https://doi.org/10.5772 /intechopen.72172
53 Hussain, M., Naeem, M.N., Shahzad, A., He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C: J Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320   DOI
54 Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459   DOI
55 Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro & Nano Letters. https://doi.org/10.1049/mnl.2019.0309
56 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(7), 56-58. https://doi.org/10.1038/354056a0   DOI
57 Karami, B., Janghorban, M. and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025   DOI
58 Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1   DOI
59 Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
60 Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., Int. J., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219
61 Akbas, S.D. (2019), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Computat. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392
62 Alibeigloo, A. and Shaban, M. (2013), "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mechanica, 224(7), 1415-1427. https://doi.org/10.1007/s00707-013-0817-2   DOI
63 Ansari, R., Rouhi, H. and Sahmani, S. (2011), "Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics", Int. J. Mech. Sci., 53, 786-792. https://doi.org/10.1016/j.ijmecsci.2011.06.010   DOI
64 Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy. M.M.J. (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B (Condensed Matter and Materials Physics), 58(20), 14013-14019. https://doi.org/10.1103/PhysRevB.58.14013   DOI
65 Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Computat. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002   DOI
66 Kiani, K. (2014), "Vibration and instability of a single-walled carbon nanotube in a three dimensional magnetic field", J. Phys. Chem. Solids, 75(1), 15-22. https://doi.org/10.1016/j.jpcs.2013.07.022   DOI
67 Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., Int. J., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417   DOI
68 Kulathunga, D.D.T.K., Ang, K.K. and Reddy, J.N. (2009), "Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories", J. Phys.: Condensed Matter, 21(43), 435301. https://doi.org/10.1088/0953-8984/21/43/435301   DOI
69 Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135
70 Lee, H.L. and Chang, W.J. (2008), "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 103(2), 024302. https://doi.org/10.1063/1.2822099   DOI
71 Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8   DOI
72 Lu, J., Chen, H., Lu, P. and Zhang, P. (2007), "Research of natural frequency of single-walled carbon nanotube", Chinese J. Chem. Phys., 20, 525. https://doi.org/10.1088/1674-0068/20/05/525-530   DOI
73 Attarnejad, R. and Ershadbakhsh, A.M. (2016), "Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution", J. Computat. Appl. Mech., 47(2), 159-180. https://doi.org/10.22059/JCAMECH.2017.140165.97
74 Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., Int. J., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311
75 Banerjee, J. and Williams, F. (1992), "Coupled bending-torsional dynamic stiffness matrix for Timoshenko beam elements", Comput. Struct., 42(3), 301-310. https://doi.org/10.1016/0045-7949(92)90026-V   DOI
76 Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodrigues- Macias, F., Shon, Y.S., Lee, T.R., Colbert, D.T. and Smalley, R.E. (1998), "Fullerene pipes", Science, 280, 1253-1256. https://doi.org/10.1126/science.280.5367.1253   DOI
77 Lordi, V. and Yao, N. (1998), "Young's modulus of single-walled carbon nanotubes", J. Appl. Phys., 84, 1939-1943. https://doi.org/10.1063/1.368323   DOI
78 Malikan, M. (2019), "On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory", J. Appl. Computat. Mech., 5(1), 103-112. https://doi.org/10.22055/JACM.2018.25507.1274
79 Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
80 Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038   DOI
81 Mehar, K. and Panda, S.K. (2016b), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of IOP Conference Series: Materials Science and Engineering, 115(1), 012014. https://doi.org/10.1088/1757-899X/115/1/012014   DOI
82 Mehar, K. and Panda, S.K. (2018a), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceedings of IOP Conference Series: Materials Science and Engineering, 338(1), 012017. https://doi.org/10.1088/1757-899X/338/1/012017   DOI
83 Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191
84 Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
85 Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029   DOI
86 Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147
87 Ansari, R., Rouhi, S. and Ahmadi, M. (2018), "On the thermal conductivity of carbon nanotube/polypropylene nanocomposites by finite element method", J. Computat. Appl. Mech., 49(1), 70-85. https://doi.org/10.22059/JCAMECH.2017.243530.195
88 Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324   DOI
89 Mehar, K. and Panda, S.K. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266   DOI
90 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181   DOI
91 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.- A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005   DOI
92 Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689   DOI
93 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017c), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057   DOI
94 Mehar, K., Panda, S.K. and Patle, B.K. (2017d), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466   DOI
95 Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002   DOI
96 Budiansky, B. and Sanders, J.L. (1963), "On the best first order linear shell theory, progress in applied mechanics", MacMillan, Inc., Greenwich, Conn., 192, 129-140.
97 Chawis, T., Somchai, C. and Li, T. (2013), "Nonlocal elasticity theory for free vibration of single-walled carbon nanotubes", Adv. Mater. Res., 747, 257-260. https://doi.org/10.4028/www.scientific.net/AMR.747.257   DOI
98 Mehar, K., Panda, S.K. and Patle, B.K. (2018a), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409   DOI
99 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Nonlinear frequency responses of functionally graded carbon nanotubereinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X   DOI
100 Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018c), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519   DOI
101 Mungra, C. and Webb, J.F. (2015), "Free Vibration Analysis of Single-Walled Carbon Nanotubes Based on the Continuum Finite Element Method", Global J. Technol Optim., 6, 173. http://dx.doi.org/10.4172/2229-8711.1000173
102 Murmu, T. and Pradhan, S.C. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Computat. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019   DOI
103 Narendar, S. and Gopalakrishnan, S. (2011), "Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics", Physica E: Low-dimens. Syst. Nanostruct., 43, 1185-1191. https://doi.org/10.1016/j.physe.2011.01.026   DOI
104 Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140   DOI
105 Chen, X. and Cao, G.X. (2006), "A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation", Nanotechnology, 17, 1004. https://doi.org/10.1088/0957-4484/17/4/027   DOI
106 Das, S.L., Mandal, T. and Gupta, S.S. (2013), "Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories", Int. J. Solids Struct., 50(18), 2792-2797. https://doi.org/10.1016/j.ijsolstr.2013.04.019   DOI
107 Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "St Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117   DOI
108 Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057
109 Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179
110 Elishakoff, I. and Pentaras, D. (2009), "Fundamental natural frequencies of double-walled carbon nanotubes", J. Sound Vib., 322, 652-664. https://doi.org/10.1016/j.jsv.2009.02.037   DOI
111 Rafiee, R. and Moghadam, R.M. (2012), "Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling", Computat. Mater. Sci., 63, 261-268. https://doi.org/10.1016/j.commatsci.2012.06.010   DOI
112 Natsuki, T., Endo, M. and Tsuda, H. (2009), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 9(3), 034311. https://doi.org/10.1063/1.2170418
113 Olofinkua, J. (2018), "On the effect of nanofluid flow and heat transfer with injection through an expanding or contracting porous channel", J. Computati. Appl. Mech., 49(1), 1-8. https://doi.org/10.22059/JCAMECH.2018.255680.264
114 Rafiee, R. and Mahdavi, M. (2016), "Molecular dynamics simulation of defected carbon nanotubes", Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater.: Des. Applicat., 230(2), 654-662. https://doi.org/10.1177/1464420715584809   DOI
115 Rana, G.C., Chand, R., Sharma, V. and Sharda, A. (2016), "On the onset of triple-diffusive convection in a layer of nanofluid", J. Computat. Appl. Mech., 47(1), 67-77. https://doi.org/10.22059/JCAMECH.2016.59256