• Title/Summary/Keyword: Rational Calculation Method

Search Result 73, Processing Time 0.036 seconds

Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

  • Kim, Sungki;Ko, Wonil;Nam, Hyoon;Kim, Chulmin;Chung, Yanghon;Bang, Sungsig
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1063-1070
    • /
    • 2017
  • This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.

Algorithm for Computational Age Dating of Nuclear Material for Nuclear Forensic Purposes

  • Park, Jaechan;Song, Jungho;Ju, Minsu;Chung, Jinyoung;Jeon, Taehoon;Kang, Changwoo;Woo, Seung Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.171-183
    • /
    • 2022
  • The parent and daughter nuclides in a radioactive decay chain arrive at secular equilibrium once they have a large half-life difference. The characteristics of this equilibrium state can be used to estimate the production time of nuclear materials. In this study, a mathematical model and algorithm that can be applied to radio-chronometry using the radioactive equilibrium relationship were investigated, reviewed, and implemented. A Bateman equation that can analyze the decay of radioactive materials over time was used for the mathematical model. To obtain a differential-based solution of the Bateman equation, an algebraic numerical solution approach and two different matrix exponential functions (Moral and Levy) were implemented. The obtained result was compared with those of commonly used algorithms, such as the Chebyshev rational approximation method and WISE Uranium. The experimental analysis confirmed the similarity of the results. However, the Moral method led to an increasing calculation uncertainty once there was a branching decay, so this aspect must be improved. The time period corresponding to the production of nuclear materials or nuclear activity can be estimated using the proposed algorithm when uranium or its daughter nuclides are included in the target materials for nuclear forensics.

Proposal of Maintenance Scenario and Feasibility Analysis of Bridge Inspection using Bayesian Approach (베이지안 기법을 이용한 교량 점검 타당성 분석 및 유지관리 시나리오 제안)

  • Lee, Jin Hyuk;Lee, Kyung Yong;Ahn, Sang Mi;Kong, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.505-516
    • /
    • 2018
  • In order to establish an efficient bridge maintenance strategy, the future performance of a bridge must be estimated by considering the current performance, which allows more rational way of decision-making in the prediction model with higher accuracy. However, personnel-based existing maintenance may result in enormous maintenance costs since it is difficult for a bridge administrator to estimate the bridge performance exactly at a targeting management level, thereby disrupting a rational decision making for bridge maintenance. Therefore, in this work, we developed a representative performance prediction model for each bridge element considering uncertainty using domestic bridge inspection data, and proposed a bayesian updating method that can apply the developed model to actual maintenance bridge with higher accuracy. Also, the feasibility analysis based on calculation of maintenance cost for monitoring maintenance scenario case is performed to propose advantages of the Bayesian-updating-driven preventive maintenance in terms of the cost efficiency in contrast to the conventional periodic maintenance.

Structural Reliability Analysis via Response Surface Method (응답면 기법을 이용한 구조 신뢰성 해석)

  • Yang, Y.S.;Lee, J.O.;Kim, P.Y.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.98-108
    • /
    • 1996
  • In the reliability analysis of general structures, the limit state equations are implicit and cannot be described in closed form. Thus, sampling methods such as the Crude Monte-Carlo simulation, and probabilistic FEM are often used, but these methods are not so effective in view of computational cost, because a number of structural analysis are required and the derivatives must be calculated for probabilistic FEM. Alternatively the response surface approach, which approximates the limit state surface by using several results of structural analysis in the region adjacent to MPFP, could be applied effectively. In this paper, the central composite design, Bucher-Bourgund method and the approximation method using artificial neural network are studied for the calculation of probability of failure by the response surface method. Through the example comparisons, it is found that Bucher-Bourgund method is very effective and Neural network method for the reliability analysis is comparable with other methods. Specially, the central composite design method is found to be rational and useful in terms of mathematical consistency and accuracy.

  • PDF

A Study on the Establishment of Basic Design Concept for Semi-Submersibles (해저자원(海底資源) 개발용(開發用) Semi-Submersible 설계기준(設計基準)의 정립(定立)을 위한 연구(硏究))

  • J.E.,Park;Z.G.,Kim;J.H.,Hwang;S.J.,Yim;H.S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.2
    • /
    • pp.1-20
    • /
    • 1983
  • In this paper design criteria for semi-submersibles, effective at the stage of basic design, are reviewed first generally. Thereafter an extensive study is focussed on essential problematic areas such as design load, heaving motion, overall structural analysis and welding technique. The necessity for this kind of research is apparent in the light of the fact that ocean exploration and exploitation becomes extended to deeper ocean and that semi-submersibles are the most favorite unit for operation under this environment. In some sense principles in naval architecture are indeed applicable to the design of semi-submersible. However, because of the difference in geometry between ships and semi-submersibles, there are significant deviations in design method. A thorough discussion is made on particular behaviours of a semi-submersible in stability, wave load, motion characteristics and structural responses. Then some calculation-procedures and design guidelines are tentatively proposed. A numerical calculation for a semi-submersible Sedco 708 is exemplified for better understanding of the concept. The structure has 4 main and another 4 secondary stabilizing columns with catamaran-type lower hull. In this example design condition is supposed to be 28m wave height, 90 knots wind speed for survival condition and seastate 6 for operational condition in water of 100m depth. The numerical result implies that the actual design of this model can be assessed close to optimum. Further intensive research is strongly required in the subject fields of dynamic stability, rational evaluation of wave load statistical basis for fatigue life judgement.

  • PDF

Validation of nuclide depletion capabilities in Monte Carlo code MCS

  • Ebiwonjumi, Bamidele;Lee, Hyunsuk;Kim, Wonkyeong;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1907-1916
    • /
    • 2020
  • In this work, the depletion capability implemented in Monte Carlo code MCS is investigated to predict the isotopic compositions of spent nuclear fuel (SNF). By comparison of MCS calculation results to post irradiation examination (PIE) data obtained from one pressurized water reactor (PWR), the validation of this capability is conducted. The depletion analysis is performed with the ENDF/B-VII.1 library and a fuel assembly model. The transmutation equation is solved by the Chebyshev Rational Approximation Method (CRAM) with a depletion chain of 3820 isotopes. 18 actinides and 19 fission products are analyzed in 14 SNF samples. The effect of statistical uncertainties on the calculated number densities is discussed. On average, most of the actinides and fission products analyzed are predicted within ±6% of the experiment. MCS depletion results are also compared to other depletion codes based on publicly reported information in literature. The code-to-code analysis shows comparable accuracy. Overall, it is demonstrated that the depletion capability in MCS can be reliably applied in the prediction of SNF isotopic inventory.

Study on Calculation Methodology for National Aviation Safety Cost (국가항공안전비용 산출방법론에 관한 연구)

  • Song, Ki-Han;Lee, Dae-Kyum
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.21-31
    • /
    • 2015
  • The world air transport industry has grown steadily with quantitative expansion. The volume of air transport in the world is skyrocketing with the open-sky trend. Air passengers from or to South Korea has shown 5% of annual growth for the last couple of decades which caused South Korea now ranking in 18th in the World for air transport market size. Quantitative expansion of Air transport affects in policy making of air transport operators, such as airports, airlines or authorities, directly and indirectly. Especially, Aviation Safety field should be supported by policy regime with the growth of air transport volume, assured resources for continuous monitoring is standing out as a vital factor. This study is to estimate social costs caused by aviation accidents and investment costs for aviation safety by airports, airlines and authorities as operators. Estimated investment costs for aviation safety verified by comparing and analysing them. Precedent studies were reviewed to refer research methodology to calculate aviation accident costs and safety costs of operators. Safety costs of operators was calculated with literature researches and interview surveys among professionals of each operators in rational range.

Analysis of FRP-Confined Concrete According to Lateral Strain History (횡변형률 이력에 근거한 FRP-구속 콘크리트의 해석)

  • Cho, Soon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.201-204
    • /
    • 2008
  • The proposed method, capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (Fiber Reinforced Polymers) composites in a rational manner, is based on the fact that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure. The elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. This procedure enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods.

  • PDF

A study on the refined resetting for the continuous weleded rail (장대레일 재설정 방법 개선 연구)

  • Kim, Woo-Jin;Jung, Chan-Mook;Min, Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.386-394
    • /
    • 2007
  • Due to the transportability problems, long rail shall be from base rail unit, which is normally 100m for regular rail and 300m for high speed rail. After these rail units are transported from the fabricator to the site, the field weld would be performed.axial stresses in the long rail is mainly from the temperature differences at various locations the long rail. Also the gaps between each welds cause secondary axial stresses in the rail. In addition to these, re-welds the fractured rails, rail buckling, irregular rail vibration, rail twist also result innonuniform axial stresses in the rail. To obtain the rail buckling stability, the rail stresses shall be released due to the resetting of CWR. Traditionally two resetting of CWR methods have been applied, the one is rail heater and the other is rail tenser. these methods, the latter has been recommended because it has less limitation in the rail length and it is easier to minimized the force differences. But even in this method, the calculation is cumbersome and is not easy to find out the rail stress distribution itself.refined methodsxial stress resetting in the long rail is studied and this study be easily applied in the real construction. From this approach, more rational rail maintenance system can be expected.

  • PDF

Development of Weigh Calculation Method for Pavement Roughness Index Considering Vehicle Wandering Distribution (원더링 분포를 고려한 도로포장 평탄성 지수의 가중치 산정기법 개발)

  • Lee, Jaehoon;Sohn, Ducksu;Park, Jejin;Cho, Yoonho
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.89-96
    • /
    • 2017
  • PURPOSES: This study aims to develop a rational procedure for estimating the pavement roughness index considering vehicle wandering. METHODS : The location analysis of the passing vehicle in the lane was performed by approximately 1.2 million vehicles for verification of the wandering distribution. According to verification result, the distribution follows the normal distribution pattern. The probability density function was estimated using each lane's wandering distribution model. Then the procedure for applying a weighted value into the lane profile was conducted using this function. RESULTS : The modified index, MRIw, with consideration towards applying the wandering weighted value application was computed then compared with MRI. It was found that the Coefficient of Variation for distribution of lateral roughness index in the lane was high in the case of a large difference between each index (i.e., MRIw and MRI) observed. CONCLUSIONS : This result confirms that the new procedure with consideration of the weight factor can successfully improve the lane representative characteristics of the roughness index.