• 제목/요약/키워드: Rate of mass combustion

Search Result 337, Processing Time 0.021 seconds

Combustion Characteristics of Orifice Size of Torch in a CVCC (토치 점화 장치의 오리피스 직경에 따른 연소특성 파악)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Choi, Chang-Hyeon;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.59-63
    • /
    • 2010
  • Seven different size of orifice were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The initial flame development and flame propagation were analyzed by the mass fraction burn and combustion enhancement rate. The combustion pressures were measured to calculate the mass fraction burn and the combustion enhancement rates. In addition, the flame propagations were visualized by the shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burned fraction were increased when using the torch-ignition device. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage.

  • PDF

Comparison of Combustion Characteristic with GN2O and GOX as Oxidizer in Hybrid Rocket (하이브리드 로켓의 산화제 종류에 따른 고체연료 연소특성 비교)

  • Lee, Jung-Pyo;Cho, Sung-Bong;Kim, Soo-Jong;Yoon, Sang-Kyu;Park, Su-Hayng;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.223-227
    • /
    • 2006
  • In this study, the combustion characteristics was studied with various oxidizer in hybrid propulsion system. In this experiments $GN_2O$ and GOX were used as oxidizer, and PE was used as fuel. The combustion behavior was explained by flame temperature with mass O/F ratio, and the use of $GN_2O$ as the oxidizer caused a increase in combustion efficiency with GOX in the same hybrid motor. The mass flow rate of gaseous oxidizer was controlled by the several chocked orifices that have different diameter, and the oxidizer supply range was $0.0138{\sim}0.0427kg/sec$. As result, the empirical relation for oxidizer type was represented by mass flux of solid fuel, it was obtained with mass transfer number, and mass flux of oxidizer.

  • PDF

Combustion Performance of a Full-scale Liquid Rocket Thrust Chamber Using Water as Coolant (실물형 액체로켓엔진 연소기 물냉각 연소시험 성능결과)

  • Han Yeoung-Min;Kim Jong-Gyu;Moon Il-Yoon;Lee Kwang-Jin;Seo Seong-Hyeon;Choi Hwan-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.187-192
    • /
    • 2006
  • The combustion performance tests of a 30 tonf-class full-scale combustion chamber performed with water as a coolant were described. The combustion chamber has chamber pressure of 53bara and propellant flow mass rate of 90kg/s. Since it was first firing test for 30tonf-class combustion chamber using channel cooling, water coolant mass flow .ate of 35kg/s and 18kg/s were performed which correspond to 110% of kerosene design volume flow rate and equivalent cooling performance of kerosene. The test results are described and the results showed that the water cooling performance of this combustion chamber is sufficient and the firing test is feasible using the kerosene as a coolant.

  • PDF

A Study on Combustion Characteristic with Chamber Pressure in Hybrid Rocket (하이브리드 로켓에서의 압력에 따른 연소특성에 관한 연구)

  • Cho, Jung-Tae;Kim, Gi-Hun;Lee, Jung-Pyo;Kim, Hak-Chul;Park, Seon-Woo;Park, Joon-Hyng;Han, Hee-Soo;Hwang, Jae-Woong;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.243-246
    • /
    • 2008
  • The combustion characteristic of solid fuel with chamber pressure were experimentally studied in hybrid combustion. This paper was experimental confirmed whether solid fuel affected not only oxidizer mass flux but also chamber pressure. Poly-Ethylene(PE) was used as fuel, GOX was used as oxidizer. Chamber pressure was controled by nozzle throat diameter 6mm and 9mm. In low oxidizer mass flux, solid fuel regression rate was affected not only oxidizer mass flux but also chamber pressure. As well, the regression rate increase as chamber pressure increase with same oxidizer mass flux.

  • PDF

Combustion of PMMA in Liquid Oxygen Flow

  • Mitsutani, Toru;Ro, Takaaki;Yuasa, Saburo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.180-185
    • /
    • 2004
  • Our previous study showed that although the hybrid rocket engine with swirling gaseous oxygen had high performance, a direct injection of LOX with swirl into the combustion chamber of the hybrid rocket engine lowered the performance of the engine, compared to that with gaseous oxygen. In order to clarify this reason, combustion tests of a small PMMA combustor with an inner port diameter of 2 mm were conducted in liquid oxygen flow by comparison with gaseous oxygen flow. Although the oxygen mass fluxes of LOX were about two orders of magnitude larger than those of gaseous oxygen, the fuel regression rate of LOX were remarkably smaller than those of gaseous oxygen. For both liquid and gaseous oxygen, diffusion flames in the port of the grain controlled the combustion process of PMMA in oxygen flow. These results may be explained by the fact that only small amount of LOX vaporized and consumed in the combustion with PMMA while flowing through the port due to relatively larger latent heat of injected liquid oxygen compared to the heat of release by combustion which depended on the burning surface area of PMMA.

  • PDF

Effect of Non-Uniform Mixture on Cycle Fluctuation of Multi-Cylinder Spark Ignition Engine(I) (다기통 전기점화기관의 혼합기 불균일화가 사이클 변동에 미치는 영향 (I))

  • 송재학;이용길;박경석;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1736-1743
    • /
    • 1992
  • The combustion in the cylinder of spark ignition engine is completed after the delayed time that the liquid film fuel is vapourized as flowing into the combustion chamber. It is necessary to enhance the homogeneity of mixture and the combustion phenomenon in order to improve the heat efficiency and the emission characteristics of spark ignition engine. The main purpose of this paper is to manufacture a combustion analyzing system and examine closely the influence of non-uniformity due to the liquid film fuel flowing in the intake manifold on the combustion characteristics by using a 4 stroke multi- cylinder spark ignition engine. Moreover, with each cylinder, the interpretation of combustion characteristics by indicator diagram and the concentration of exhaust gas were investigated.

Injector Head Design of 170tonf UDMH-LOX Liquid Rocket Engine (추력 170톤급 UDMH-LOX 계열 액체로켓엔진의 인젝터 헤드 설계)

  • Lim, Seok-Hee;Gostsev, V.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.207-210
    • /
    • 2006
  • Injector is one of the most important elements in Liquid rocket Engine design, and how to arrange these injectors on the head determines the engine performance. In this study, when the swirl injectors are used for the 1st designing of injector head of 170 tonf UDMH-LOX as the propellant of LRE, a distribution relation of the mass flow rate per unit area was calculated from the function of ${\Phi}$, which is related with the mass flow rate characteristics of swirl injector. And the combustion characteristics by circumferential axis were estimated using this relation under the consideration of combustion core and film cooling area.

  • PDF

CONE CALORIMETER STUDIES OF WOOD SPECIES

  • Grexa, Ondrej;Horvathova, Elena;Osvald, Anton
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.77-84
    • /
    • 1997
  • Cone calorimeter measurements can be used for the calculation of effective material properties, which can be used as input parameters in modeling of fire. Main parameter measured in Cone calorimeter is heat release rate. Some other parameters as time to ignition, effective heat of combustion, mass loss rate or total heat released is also measured in Cone calorimeter. Total heat released is important from the point of view of total energy available in material in Fire situation. Cone calorimeter. measurements were done on several wood species (oak, beech, spruce, poplar). Measurements were provided at external irradiances 30, 50 and 65 ㎾/$m_2$ in horizontal orientation. Heat release rate data were evaluated and compared as a function of external irradiance for various species of wood. furthermore the influence of external irradiance on effective heat of combustion and total heat release was also evaluated for the period of flame combustion.

  • PDF

Film cooling Effects on Wall Heat Flux of a Subscale Calorimetric Combustion Chamber (막냉각량에 따른 축소형 칼로리미터의 열유속 특성에 관한 연구)

  • Kim, Jong-Gyu;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.93-99
    • /
    • 2006
  • The effects of the changes of a film cooling mass flow rate and operating conditions on wall heat flux characteristics of a subscale calorimetric combustion chamber were investigated by experiment and numerical analysis. At the nominal operating condition, with the film cooling mass flow rate being 10.5 percent of a main fuel mass flow rate, maximum heat flux at the nozzle throat was measured to be 30 percent lower than that without the film cooling. For the relatively higher mixture ratio and chamber pressure condition, maximum heat flux at the nozzle throat was increased by 31 percent compared to that of the nominal condition test without film cooling.

Effect of Compression Ratio on the Combustion Characteristics of a Thermodynamics-Based Homogeneous Charge Compression Ignition Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Homogeneous charge compression ignition (HCCI) engine combines the combustion characteristics of a compression ignition engine and a spark ignition engine. HCCI engines take advantage of the high compression ratio and heat release rate and thus exhibit high efficiency found in compression ignition engines. In modern research, simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. Engine simulation has been developed to predict the performance of a homogeneous charge compression ignition engine. The effects of compression ratio, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion characteristics model for a homogeneous charge compression ignition engine running with isooctane as a fuel and effect of compression ratio.