• Title/Summary/Keyword: Rate of mass combustion

Search Result 337, Processing Time 0.026 seconds

A Numerical Study of the Effect of Sprinkler Spray on the Flow Characteristics Induced by Fire (스프링클러 분무가 화재유동특성에 미치는 영향에 관한 수치해석 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.105-110
    • /
    • 2012
  • The present study investigates the effects of sprinkler spray on fire driven flow characteristics in a compartment based on numerical approach. The FDS (Fire Dynamics Simulator), a widely used fire field model, was used to simulate the fire induced flow and sprinkler spray and a series of grid independence tests have been performed to obtain the optimal grid size. In order to validate the result predicted by FDS model, the calculated results were compared with experimental results of Magnone et al.. The FDS model matches quite well to experiments in temperature profile and mass flux through doorway, however, the discrepancy between the FDS model and experiments increases with increasing water discharge rate. As with previous study, the FDS calculation also shows a decrease of mass flow rate of combustion products through doorway due to the sprinkler spray. This study can contribute to optimize the sprinkler system design and verify the validity of the fire field model with sprinkler spray.

A Study on the Effects of Intake Port Geometry on In-Cylinder Swirl Flow Field in a Small D.I. Diesel Engine (직접분사식 소형 디젤엔진의 실린더내 스월 유동장에 미치는 흡기포트의 형상에 관한 연구)

  • Lee, Ki-Hyung;Han, Yong-Taek;Jeong, Hae-Young;Leem, Young-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2004
  • This paper studies the effects of intake port configuration on the swirl that is key parameter in the flow field of direct injection diesel engines. In-cylinder flow characteristics is known to have significant effects on fuel air mixing, combustion and emissions. To investigate the swirl flow generated by various intake ports, steady state flow tests were conducted to evaluate the swirl. Helical port geometry, SCV shape and bypass were selected as the design parameters to increase the swirl flow and parametric study was performed to choose the optimal port shape that would generate a high swirl ratio efficiently. The results revealed that a key factor in generating a high swirl ratio was to suitably control the direction of the intake air flow passing through the valve seat. For these purposes, we changed the distance of helical and tangential port as well as installed bypass near the valve seat and the effects of intake port geometry on in-cylinder flow field were visualized by a laser sheet visualization method. From the experimental results, we found that the swirl ratio and mass flow rate had a trade off relation. In addition, the result indicates that the bypass is a effective method to increase the swirl ratio without sacrificing mass flow rate.

Numerical Study of Heat and Mass Transfer Characteristics in Microchannel Steam Methane Reforming Reactor (마이크로채널 메탄 수증기 개질 반응기의 열 및 물질 전달 특성에 관한 수치해석 연구)

  • Jeon, Seung-Won;Lee, Kyu-Jung;Cho, Yeon-Hwa;Moon, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.885-894
    • /
    • 2012
  • A numerical study of a microchannel steam methane reforming reactor has been performed to understand the characteristics of heat and mass transfer. The integration of Rh-catalyzed steam methane reforming and Pt-catalyzed methane combustion has been simulated. The reaction rates for chemical reactions have been incorporated into the simulation. This study investigated the effect of contact time, flow pattern (parallel or counter), and channel size on the reforming performance and temperature distribution. The parallel and counter flow have opposite temperature distribution, and they show a different type of reaction rate and species mole fraction. As the contact time decreases and channel size increases, mass transfer between the catalyst layer and the flow is limited, and the reforming performance is decreased.

Calcination Properties of Cement Raw Meal and Limestone with Oxidation/Reduction Condition (산화/환원 소성분위기에서 석회석 및 시멘트 원료물질의 소성거동 특성)

  • Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Jin-Sang;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.64-72
    • /
    • 2020
  • When the multi-stage combustion process is applied to the cement kiln to reduce nitrogen oxide emissions in the cement industry, oxidation/reduction section that can increase combustion efficiency by reducing NOx to NO and completely burning unburned materials is essential In this study, when applied the oxidation/reduction system of the cement kiln preheater and calciner, the optimal oxidation/reduction calcination crisis that can secure the quality stability of the final product, cement clinker, was to be observed macroscopically, and the mass change of raw materials according to the burning conditions, decarbonation rate, and calcination rate were investigated. The results showed that the thermal decomposition of raw materials tends to be promoted in the oxidation condition rather than in the reduction condition, and that the thermal decomposition of limestone, which has a relatively high CaO content, is carried out later than that of cement raw meal, which is thought to be caused by the CO2 fractionation in the kiln. The thermal decomposition properties of raw materials according to oxidation/reducing burning condition showed a relatively large difference in temperature range lower than normal limestone themal decomposition temperature, which is thought to be expected to improve the thermal efficiency of raw materials according to the formation of oxidation condition in the section 750℃ of burning temperature. However, for this study, lab scale. Because there is a difference from the field process as a scale study, it is deemed necessary to verify the actual test results of the pilot scale.

Thermal Characteristics of Living Leaves in Pinus Densiflora with Heat Flux (복사열 증가에 따른 소나무 생엽의 열적특성 분석)

  • Park, Young-Ju;Lee, Hae-Pyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.75-82
    • /
    • 2010
  • To study the combustion characteristics of forest fuel by fire intensity, the experiment of combustion characteristics on Pinus Densiflora living leaves, which is the weakest species to the forest fire, was delivered, using variables of heat flux(25 kW/$m^2$, 50 kW/$m^2$, 75 kW/$m^2$). With the equipment of Cone calorimeter, the characteristics of ignition, heat, smoke release, CO and $CO_2$ release, and mass loss were analyzed. Pinus Densiflora living leaves containing moisture of 60.66% were not ignited at the heat flux of variables 25 kW/$m^2$, 50 kW/$m^2$, 75 kW/$m^2$. In proportion to the heat flux value, heat release amount and heat release rate reached maximum value rapidly: higher variables came to the maximum by the half rapidity and the maximum value were twice higher than the former lower variables respectively. As for the smoke release, the less heat flux the variable had, the more smoke release it had, due to incomplete combustion. The release amount of CO and $CO_2$ had more maximum value as the heat flux increased and more radiant heat meaned more carbon oxide. When the forest fire breaks out, therefore, a great amount of CO and $CO_2$ will be released by Pinus Densiflora.

Evaluation of the Burning Properties of Various Carpet Samples by using the Cone Calorimeter and Gas Toxicity Test (콘칼로리미터와 가스유해성 시험법을 이용한 카페트류의 연소특성 평가)

  • Lee, Bong-Woo;Kwon, Seong-Pil;Lee, Jang-Won;Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Hyun-Joong
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • In this study, the burning behaviours of five different kinds of carpet samples covered with nylon, PP (polypropylene), PTT (poly(trimethylene terephthalate)), wool fabric and NW (nylon and wool) were evaluated by using the cone calorimeter having a radiant flux of 50kW/$m^2$. And the combustion gas toxicity was evaluated according to KS F 2271 test method. As a result of the cone calorimeter test (KS F ISO 5660-1), nylon carpet samples were ignited most easily. In ignition ability or initial flammability, NW carpet samples showed the highest value. In heat release rate (HRR), fire intensity, PP carpet samples were larger than any other samples. Nylon carpet samples were the highest smoke production rate, while N/W carpet samples the lowest. The following were in mass loss rates: NW > wool > nylon > PP > PTT. CO (carbon monoxide) was one of the most toxic gases released from the combustion. PTT carpet samples gave rise to the highest CO concentration, while NW carpet samples the lowest. In addition, PP carpet samples caused the highest $CO_2$ (carbon dioxide) concentration, while NW carpet samples the lowest. Toxicity of the gas produced from carpet samples was determined by the mouse stop motion, and it resulted in the fact that the combustion gas of PTT carpet samples was more toxic than that of any other samples.

Combustive Properties of Specimens Treated with Methylenepiperazinomethyl-Bis-Phosphonic Acid (Mn+)s (메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리된 시험편의 연소성)

  • Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.505-510
    • /
    • 2015
  • This study was performed to test the combustive properties of pinus rigida specimens treated with methylpiperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$)s and methylpiperazinomethyl-bis-phosphonic acid (PIPEABP). Each pinus rigida plates were painted three times with 15 wt% $PIPEABPM^{n+}s$ or PIPEABP solutions at the room temperature. After drying specimens treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It was indicated that the speed to peak mass loss rate ($MLR_{peak}$), (0.104~0.121) g/s for specimens treated with $PIPEABPM^{n+}s$ was lower than that of PIPEABP plate. In addition, the total smoke release rate (TSRR), $(224.4{\sim}484.0)m^2/m^2$ for $PIPEABPM^{n+}s$ treated specimens except specimen treated with PIPEABPAl3+ and $CO_{mean}$ production (0.0537~0.0628) kg/kg was smaller than that of PIPEABP plate. In particular, for the specimens treated with $PIPEABPM^{n+}$ by reducing the smoke production rate, the second-smoke production rate (2nd-SPR) $(0.0117{\sim}0.0146)m^2/s$ was lower than that of PIPEABP plate. It can thus be concluded that combustion-retardation properties of the treated $PIPEABPM^{n+}s$ were partially improved compared to those of the virgin plate.

Combustive Characteristics of Wood Specimens Treated with Alkylenediaminoalkyl-Bis-Phosphonic Acids (알킬렌디아미노알킬-비스-포스폰산으로 처리된 목재의 연소특성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.57-63
    • /
    • 2013
  • This study was performed to test the combustive properties of Pinus rigida specimens treated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), and N,N-dimethylethylene-diaminomethyl-bis-phosphonic acid (MDEDAP). Pinus rigida Plates were painted in three times with 15 wt% alkylenedi-aminoalkyl-bis-phosphonic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It was indicated that the specimens treated with chemicals showed the later time to peak mass loss rate ($TMLR_{peak}$) = (315~420) s than that of virgin plate by reduc-ing the burning rate except for $TPMR_{peak}$ (280 s) treated with DMDAP. In adition, the specimens treated with chemicals showed both the higher total smoke release rate (TSRR) (407.3~902.0) $m^2/m^2$ and $CO_{mean}$ production (407.3~902.0) $m^2/m^2$ than those of virgin plate. Especially, for the specimens treated with PIPEABP, 1st-smoke production rate (1st-SPR) (0.1250~0.1297) g/s was lower than that of virgin plate, while the 2nd-SPR (0.183 g/s) was higher. Thus, It is supposed that the combustion-retardation properties were improved by the partial due to the treated alkylenediaminoalkyl-bis-phos-phonic acids in the virgin Pinus rigida.

Combustion Chracteristics of Wood Treated with Bis-(dialkylaminoalkyl) Phosphinic Acids (비스-디알킬아미노알킬 포스핀산으로 처리된 목재의 연소특성)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.21-26
    • /
    • 2013
  • This study was performed to test the combustive properties of Pinus rigida plates treated with bis-(dimethylaminomethyl) phosphinic acid (DMDAP), bis-(diethylaminomethyl) phosphinic acid (DEDAP), and bis-(dibuthylaminomethyl) phosphinic acid (DBDAP). Pinus rigida specimens were painted in three times with 15 wt% bis-(dialkylaminoalkyl) phosphinic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It is supposed that the combustion-retardation properties were improved by the partial due to the treated bis-(dialkylaminoalkyl) phosphinic acids in the virgin Pinus rigida. Especially, the specimens treated with chemicals showed both the lower total smoke release rate (TSRR) ($16.94{\sim}18.92m^2/m^2$) and lower $CO_{2mean}$ production (1.98~2.09 kg/kg) than those of virgin plate. However the specimens treated with chemicals showed both the higher peak mass loss rate (PMLR) (0.1250~0.1297 g/s) and higher 1st-smoke production rate (SPR) (0.0153~0.0167 g/s) than those of virgin plate. Compared with virgin Pinus rigida plate, the specimens treated with the bis-dialkylamimoalkyl phosphinic acids showed partially low combustive properties.

A Study on Contaminant Emission and Combustion of Anthracite-Bituminous Coal Blend in a Fluidized Bed Coal Combustor (유동층 연소로에서 유$cdot$무연탄 혼합 연소시 대기오염물질 배출에 관한 연구)

  • 조상원;정종현;손병현;김영식;오광중
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.28-36
    • /
    • 1996
  • The objects of this study were to investigate emissions of air pollutant the particles as well as the combustibility of the low grade domestic anthracite coal and imported high-calorific bituminous coal in the fluidized bed coal combustor. The production of air pollution from anthracite-bituminous coal blend combustion in a fluidized bed coal combustor was evaluated. The effects of air velocity and anthracite fraction on the reaching time of steady state condition was also evaluated. We used coal samples the domestic low grade anthracite coal with heating value of 2,010 kcal/kg and the imported high grade bituminous coal with heating value of 6,520 kcal/kg. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 0.3 m/s which was the fastest. It has been found that $O_2$ and $CO_2$ concentration were reached steady state at about 100 minute. As the height of fluidized bed becomes higher, the concentration s of $SO_2$ and $NO_x$ mainly increased. The concentration of freeboard was the highest and emission concentration was diminished. Also, as anthracite fraction increased, the emission of $SO_x$ concentration was increased. But, it has been found that the variation of $NO_x$ concentration with anthracite fraction was negligible and the difference of emission concentration according to air flow rates was negligible, too. It has been found that $O_2$ concentration decreased and $CO_2$ concentration increased as the height of fluidized bed increased. As anthracite fraction increased, the mass of elutriation particles increased, and $CO_2$ concentration decreased. Also, as air velocity increased, $O_2$ concentration decreased and $CO_2$ concentration increased. Regardless-of anthracite fraction and flow rate, the combustible weight percentage in elutriation particles were high in the case of fine particles.

  • PDF