• Title/Summary/Keyword: Rate of fuel consumption

Search Result 389, Processing Time 0.025 seconds

Ondol Heating System Using Heat Pump - Comparison of Energy Consumption between the Heat Pump and the Oil Boiler - (열펌프를 이용한 온돌 난방 시스템 - 열펌프와 석유보일러의 소요에너지 비교 -)

  • 김현철;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.351-358
    • /
    • 1999
  • In these days, we are faced to a couple of difficult problems, the one is the unstable price of the energy due to the shortage of fossil fuel resources and the other is the serious environmental pollution from the excessive consumption of fossil fuel. In order to save the thermal energy for the house heating, in this study the heat pump using the natural thermal energy resources was provided for Ondol heating and the thermal energy consumption of the heat was compared to that of oil boiler. The results could be summarized as follows: 1. In the Ondol room the temperature difference between the Ondol surface and room air was about 5∼$10^{\circ}C$ in accordance with the ambient temperature. 2. The Ondol room heating efficiency of the heat pump with compressor of 2PS was the highest at the water flow rate of 200 l/h. 3. The energy saving rate of the heat pump to the oil boiler for heating the Ondol system was 19.3%. 4. The Ondol heating cost of the heat pump was less 20.6% than that of oil boiler when oil price was 478 won/l.

  • PDF

A Comparative Study on Fuel Consumption Depending on The Use of Lift Axle (가변축 사용여부에 따른 연료소모량 비교 연구)

  • Oh, Ju-Sam;Eo, Hyo-Kyoung
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.185-193
    • /
    • 2011
  • As a Lift axle is an additional axle installed mostly in heavy freight truck, It"s introduced for the purpose of cost saving, such as logistics, fuel, tire wear and prevention of the pavement damage. However, the Effects of a lift axle are anecdotal and they have occurred often that a lift axle is used improperly by expectations of some drivers. For these reasons, this study conducts a field experiment in order to identifying the change rate of fuel consumption due to an a Lift axle using, develops the fuel consumption model of field data, and then compares the effects of a Lift axle using through application of the model. As a result, fuel consumption decreased in loading conditions that are both empty and full when not using a lift axle.

Development of Engine ECU_ILS System for Diesel Engine of Commercial Vehicle (상용차용 디젤엔진의 Engine ECU_ILS 시스템 개발)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.35-43
    • /
    • 2014
  • The automobile industry requires technological innovations to reduce fuel consumption with the public interest in environmental conservation in recent years. Thus, the hybrid system is applied not only to passenger cars but also commercial vehicles. The purpose of this paper is to develop engine ECU_ILS to develop commercial hybrid vehicles. In order to develop the engine and vehicle, the dynamometer and exhaust gas analyzer is needed. However, a lot of time and cost are required. In contrast, the model-based development environment that can be applied to a variety of test conditions can reduce development time. Therefore, a HILS system environment that can consider the behavior of actual vehicles for evaluation of the control logic, fuel consumption and exhaust gas is required. This engine ECU_ILS system was developed in this study, can analyze parameter such as the fuel injection rate, fuel injection time, fuel consumption and exhaust gas like the actual vehicle test using map data. Also, this system is expected to be able to analyze the characteristic of vehicle behavior and the development of peripheral device in relation to engine and vehicles. This HILS system can be used to develop control strategies of commercial hybrid vehicle systems in the future.

A Study on the Physical Modeling of the Shaft Generator and the Fuel Consumption Verification Simulation of a Tugboat using Simulink (Simulink를 이용한 터그보트의 샤프트제너레이터 물리모델링 및 연료소모율 검증 시뮬레이션에 관한 연구)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • In recent years, the importance of environmental regulations is increasing in the shipping industry, and the demands of the industry for this are rapidly increasing. Accordingly, the demand of ship owners is increasing as the shaft generator is a technology that responds to environmental regulations that can be applied to ships the fastest. The shaft generator is a device that can increase the fuel consumption rate of the main propulsion engine by installing an electric motor in the main propulsion engine and using it variably according to the load environment. It operates by the power of the motor at low speeds, and when a sudden load is required, the main propulsion engine and motor operate together, enabling efficient operation. In this paper, the diesel engine and shaft generator of a tug boat are modeled using MATLAB Simulink, and the fuel consumption rate is verified through simulation.

On the Performance Improvement of the Diesel Engine by Uitrasonic Treatment of Fuel Oil (연료유의 초음파 처리에 의한 디젤기관의 성능향상에 관한 연구)

  • 양정규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.191-196
    • /
    • 1992
  • This paper is an experimental study to investigate utility of ultrasonic treatment of fuel oil in diesel engine. Experiment was carrid out to clarify the effect of ultrsonic vibration on the characteristics of maximum pressure, fuel consumption ratio, smoke, BMEP and torque. The result obtained are as follows: 1. In the case of given ultrsonic vibration, the maximum pressure is increased in all experimental conditions. 2. In the case of given ultrsonic vibration, the decrease effect of fuel consumption rate is increased at low rpm. 3. The generation quantity of soots is increased according to load. In the case of given ultrsonic vibration, the decreased quantity of soots does not very according to load. 4. In the case of given ultrsonic vibration, the BMEP and torque are increased at low load.

  • PDF

A Study on the Characteristics of Combustion and Performance by Changing Temperature in Diesel Fuel (디젤연료 온도변화가 기관성능 및 연소특성에 관한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.110-116
    • /
    • 2017
  • Recently the global warming caused by greenhouse gas has emerged as a global environmental problem. For this reason the continued efforts to reduce greenhouse gas emission by international cooperation and each country are in progress. Climate changing has been recognized as the world economy development from fossil fuel use is the culprit. The international maritime organization marine environment protection committee of the global warming reduction emerged restrictions on air pollution have been strengthened. Therefore, the author has investigated the effects of fuel temperature on the characteristics of combustion and performance, using an four-cycle, six cylinders and direct injection diesel engine. The results of cylinder pressure, rate of pressure rise, rate of heat release and specific fuel consumption were increased by changing of fuel temperature.

Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines (물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

A PRELIMINARY STUDY ON THE EFFECT OF SLANTED GROOVE MIXER (SGM) ON THE PERFORMANCE OF A PEM FUEL CELL (기울어진 그루브 믹서가 고분자 전해질 연료전지 성능에 미치는 영향에 대한 기초연구)

  • Yun, S.C.;Park, J.W.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.93-96
    • /
    • 2009
  • In the cathode channel of a PEM fuel cell, the local concentration of oxygen near the gas diffusion layer (GDL) decreases in streamwise direction due to chemical reactions, which degrades the efficiency of the oxygen consumption and overall fuel cell efficiency. We numerically studied the influence of the swirling flow generated by a slanted groove mixer (SGM) on the concentration distribution of oxygen. We found that the swirling flow can increase the concentration of oxygen near the GDL, and subsequently improves the oxygen consumption rate.

  • PDF

An Experimental Study on the Performance and the Exhaust Emissions of Gasoline Engine Using Water-Gashol Blends as a Fuel (물-가스홀 혼합물을 연료로 사용한 가솔린기관의 성능 및 배기성분에 관한 실험적 연구)

  • 노상순;배명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.25-38
    • /
    • 1984
  • Since the energy shock in 1973, there have been wide studies for the developments of the alternative energy source, the rationalization of the energy utilization and the energy economy because of the recognition of the limitation of energy source all over the world. This study is experimentally examined in and compared with the engine performance of output, torque and fuel consumption rate, and the exhaust emissions with the change of engine rmp in the cases of using water-gashol blends, gashol and gasoline as a fuel in a conventional 4 cycle 4 cylinder gasoline engine. In the case of using water-gashol blends, it is installed by the exhaust manifold pipe into the intake manifold, and water is injected from nozzle fitted up the air horn of the carburetor. The results are obtained as follows; 1. In the case of an addition with water, the engine output and the torque are little difference with the case of gasoline. 2. The fuel consumption rate is decreased as compared with the case of gasoline. Especially, the decrease in quantity is remarkable at the low rpm. 3. The exhaust emissions are remarkably decreased as compared with the case of gasoline. Especially, decreases of CO and HC in quantity are remarkable at the low rpm, and a decrease of No/sub x/ in quantity is remarkable at the high rpm. 4. There is a moderate condition of operation because the producing factors of NO/sub x/ and CO, HC are contrary to each other.

  • PDF

Experimental Study on Hydrogen Direct Reduction of Hematite in a Lab Scale Fluidized Bed Reactor by Estimating the Gas Consumption Rate

  • Hasolli, Naim;Jeon, Seong Min;Park, Young Ok;Kim, Yong Ha
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.96-101
    • /
    • 2015
  • Hematite reduction using hydrogen was conducted and the various process parameters were closely observed. A lab scale fluidized bed unit was designed especially for this study. The optimal values of the gas velocity, reduction time and temperature were evaluated. The values which indicated the highest reduction rate were set as fixed parameters for the following tests starting with the reduction time of 30 minutes and 750 ℃ of temperature. Among these variables the one with the highest interest was the gas specific consumption. It will tell the amount of the gas which is required to achieve a reduction rate of over 90% at the optimal conditions. This parameter is important for the scale up of the lab scale unit. 1,500 Nm3/ton-ore was found to be the optimal specific gas consumption rate at which the reduction rates exhibit the highest values for hematite.