• Title/Summary/Keyword: Rate and Temperature Dependent Constitutive Model

Search Result 14, Processing Time 0.026 seconds

Modified Integration Algorithm on the Strain-Space for Rate and Temperature Dependent Elasto-Plastic Constitutive model (변형률 공간에서 변형률속도 및 온도를 고려한 구성방정식의 개선된 적분방법)

  • Cho, S.S.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.272-275
    • /
    • 2007
  • This paper is concerned with modified integration algorithm on the strain-space for rate and temperature dependent elasto-plastic constitutive relations in order to obtain more accurate results in numerical implementation. The proposed algorithm is integrated analytically using integration by part and chain rule and then is applied to the 2-stage Lobatto IIIA with second-order accuracy. It has advantage that is able to consider the convective stress rates on the yield surface of the strain-space. Also this paper is carried out the iteration procedure using the Newton-Raphson method to enforce consistency at the end of the step. And the performance of the proposed algorithm for rate and temperature dependent constitutive relation is illustrated by means of analysis of adiabatic shear bands.

  • PDF

Dynamic Constitutive Equations of Auto-body Steel Sheets with the Variation of Temperature (II) - Flow Stress Constitutive Equation - (차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (II) - 온도에 따른 동적 구성방정식 -)

  • Lee, Hee-Jong;Song, Jung-Han;Park, Sung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.182-189
    • /
    • 2007
  • This paper is concerned with the empirical flow stress constitutive equation of steel sheets for an auto-body with the variation of temperature and strain rate. In order to represent the strain rate and temperature dependent behavior of the flow stress at the intermediate strain rates accurately, an empirical hardening equation is suggested by modifying the well-known Khan-Huang-Liang model. The temperature and strain rate dependent sensitivity of the flow stress at the intermediate strain rate is considered in the hardening equation by coupling the strain, the strain rate and the temperature. The hardening equation suggested gives good correlation with experimental results at various intermediate strain rates and temperatures. In order to verify the effectiveness and accuracy of the suggested model quantitatively, the standard deviation of the fitted result from the experimental one is compared with those of the other two well-known empirical constitutive models such as the Johnson-Cook and the Khan-Huang-Liang models. The comparison demonstrates that the suggested model gives relatively well description of experimental results at various strain rates and temperatures.

An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials

  • Li, Xin;Zhang, Chao;Wu, Zhangming
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.539-551
    • /
    • 2021
  • With the continuous increase of computational capacity, more and more complex nonlinear elastoplastic constitutive models were developed to study the mechanical behavior of elastoplastic materials. These constitutive models generally contain a large amount of physical and phenomenological parameters, which often require a large amount of computational costs to determine. In this paper, an inverse parameter determination method is proposed to identify the constitutive parameters of elastoplastic materials, with the consideration of both strain rate effect and temperature effect. To carry out an efficient design, a hybrid optimization algorithm that combines the genetic algorithm and the Nelder-Mead simplex algorithm is proposed and developed. The proposed inverse method was employed to determine the parameters for an elasto-viscoplastic constitutive model and Johnson-cook model, which demonstrates the capability of this method in considering strain rate and temperature effect, simultaneously. This hybrid optimization algorithm shows a better accuracy and efficiency than using a single algorithm. Finally, the predictability analysis using partial experimental data is completed to further demonstrate the feasibility of the proposed method.

Development of Temperature and Strain-Rate Dependent Unified Constitutive Equation for Ships and Offshore Structures (선박 및 해양구조물용 극저온 재료의 온도 및 변형률 속도 의존 통합 구성방정식 개발)

  • Park, Woong-Sup;Kim, Jeong-Hyeon;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.200-206
    • /
    • 2011
  • The mechanical properties of the most widely used cryogenic materials, i.e. austenitic stainless steel (ASS), aluminum alloy and invar steel, strongly depend on temperatures and strain rates. These phenomena show very complicated non-linear behaviors and cannot be expressed by general constitutive equation. In this study, an unified constitutive equation was proposed to represent the effect of temperature and strain rate on the materials. The proposed constitutive equation has been based on Tomita/Iwamoto and Bodner/Partom model for the expression of 2nd hardening due to martensite phase transformation of ASS. To simulate ductile fracture, modified Bodner/Chan damage model was additionally applied to the model and the model validity was verified by comparison of experimental and simulation results.

Temperature-Dependent Viscoplastic-Damage Constitutive Model for Nonlinear Compressive Behavior of Polyurethane Foam (폴리우레탄 폼 비선형 압축 거동 해석용 온도 의존 손상 점소성 구성방정식)

  • Lee, Jeong-Ho;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.437-445
    • /
    • 2016
  • Recently, polyurethane foam has been used in various industry fields to preserve temperature environment of structures, and a wide range of loads from the static to the dynamic are imposed on the material during a life period. The biggest characteristic of polyurethane foam is porosity as being polymeric material, and it is generally known that insulation performance of the material strongly depends on internal void size. In addition, polyurethane foam's mechanical behavior has high dependence on strain rate and temperature as well as being highly non-linear ductile for compression. In the non-linear compressive behavior, volume fraction of voids and elastic modulus decrease as strain increases. Therefore, in this study, temperature-dependent viscoplastic-damage constitutive model was developed to describe the non-linear compressive behavior with the aforementioned features of polyurethane foam.

The Rate Dependent Deformation Behavior of AISI Type 304 Stainless Steel at Room Temperature (304 스테인리스강의 점소성 특성에 관한 연구)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.101-106
    • /
    • 2007
  • Uniaxial displacement controlled tests were performed on annealed Type 304 stainless steel at room temperature. A servo-controlled testing machine and strain measurement on the gage length were employed to measure the response to a given input. The test results exhibit that the flow stress increases nonlinearly with the strain rate and the relaxed stress at the end of the relaxation periods depends strongly on the strain rate preceding the relaxation test. The rate-dependent inelastic deformation behavior is simulated using a new unified viscoplasticity model that has the rate-dependent format of nonlinear kinematic hardening rule, which plays a key role in modeling the rate dependence of relaxation behavior. The model does not employ yield or loading/unloading criteria and consists of a flow law and the evolution laws of two tensor and one scalar-valued state variables.

Analysis of Thermo-Viscoplastic Behavior of Structures Using Unified Constitutive Equations (통일구성방정식을 이용한 구조물의 열점소성 거동에 관한 해석)

  • 윤성기;이주진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.190-200
    • /
    • 1991
  • Certain structural components are exposed to high temperatures. At high temperature, under thermal and mechanical loading, metal components exhibit both creep and plastic behavior. The unified constitutive theory is to model both the time-dependent behavior(creep) and the time-independent behavior(plasticity) in one set of equations. Microscopically both creep and plasticity are controlled by the motion of dislocations. A finite element method is presented encorporating a unified constitutive model for the transient analysis of viscoplastic behavior of structures exposed to high temperature.

Tension-Compression Asymmetry in the Off-Axis Nonlinear Rate-Dependent Behavior of a Unidirectional Carbon/Epoxy Laminate at High Temperature and Incorporation into Viscoplasticity Modeling

  • Kawai, M.;Zhang, J.Q.;Saito, S.;Xiao, Y.;Hatta, H.
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.265-285
    • /
    • 2009
  • Off-axis compressive deformation behavior of a unidirectional CFRP laminate at high temperature and its strain-rate dependence in a quasi-static range are examined for various fiber orientations. By comparing the off-axis compressive and tensile behaviors at an equal strain rate, the effect of different loading modes on the flow stress level, rate-dependence and nonlinearity of the off-axis inelastic deformation is elucidated. The experimental results indicate that the compressive flow stress levels for relatively larger off-axis angles of $30^{\circ}$, $45^{\circ}$ and $90^{\circ}$ are about 50 percent larger than in tension for the same fiber orientations, respectively. The nonlinear deformations under off-axis tensile and compressive loading conditions exhibit significant strain-rate dependence. Similar features are observed in the fiber-orientation dependence of the off-axis flow stress levels under tension and compression and in the off-axis flow stress differential in tension and compression, regardless of the strain rate. A phenomenological theory of viscoplasticity is then developed which can describe the tension-compression asymmetry as well as the rate dependence, nonlinearity and fiber orientation dependence of the off-axis tensile and compressive behaviors of unidirectional composites in a unified manner. It is demonstrated by comparing with experimental results that the proposed viscoplastic constitutive model can be applied with reasonable accuracy to predict the different, nonlinear and rate-dependent behaviors of the unidirectional composite under off-axis tensile and compressive loading conditions.

Analysis of Damaged Material Response Using Unified Viscoplastic Constitutive Equations (통합형 점소성구성식을 이용한 손상재료거동해석)

  • Ha Sang Yul;Kim Ki Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.253-261
    • /
    • 2005
  • In decades, a substantial body of work on a unified viscoplastic model which considers the mechanism of plastic deformation and creep deformation has developed. The systematic scheme for numerical analysis of unified model is necessary because the dominant failure mechanism is the defect growth and coalescence in materials. In the present study, the unified viscoplastic model for materials with defects suggested by Suquet and Michel was employed for numerical analysis. The constitutive equations are integrated based on the generalized mid-point rule and implemented into a finite element program (ABAQUS) by means of user-defined subroutine (UMAT). To evaluate the validity of the developed UMAT code and the assessment of the adopted viscoplastic model, the results obtained from the UMAT code was compared with the numerical reference solution and experimental data. The unit cell analysis also has been investigated to study the effect of strain rate, temperature, stress triaxiality and initial defect volume fraction on the growth and coalescence of the defect.

Prediction of Deformation Texture in BCC Metals based on Rate-dependent Crystal Plasticity Finite Element Analysis (속도의존성 결정소성 모델 기반의 유한요소해석을 통한 BCC 금속의 변형 집합조직 예측)

  • Kim, D.K.;Kim, J.M.;Park, W.W.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.231-237
    • /
    • 2014
  • In the current study, a rate-dependent crystal plasticity finite element method (CPFEM) was used to simulate flow stress behavior and texture evolution of a body-centered cubic (BCC) crystalline material during plastic deformation at room temperature. To account for crystallographic slip and rotation, a rate-dependent crystal constitutive law with a hardening model was incorporated into an in-house finite element program, CAMPform3D. Microstructural heterogeneity and anisotropy were handled by assigning a crystallographic orientation to each integration point of the element and determining the stiffness matrix of the individual crystal. Uniaxial tensile tests of single crystals with different crystallographic orientations were simulated to determine the material parameters in the hardening model. The texture evolution during four different deformation modes - uniaxial tension, uniaxial compression, channel die compression, and simple shear deformation - was investigated based on the comparison with experimental data available in the literature.