• Title/Summary/Keyword: Rate allocation

검색결과 874건 처리시간 0.038초

Cross-Layer Resource Allocation in Multi-interface Multi-channel Wireless Multi-hop Networks

  • Feng, Wei;Feng, Suili;Zhang, Yongzhong;Xia, Xiaowei
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.960-967
    • /
    • 2014
  • In this paper, an analytical framework is proposed for the optimization of network performance through joint congestion control, channel allocation, rate allocation, power control, scheduling, and routing with the consideration of fairness in multi-channel wireless multihop networks. More specifically, the framework models the network by a generalized network utility maximization (NUM) problem under an elastic link data rate and power constraints. Using the dual decomposition technique, the NUM problem is decomposed into four subproblems - flow control; next-hop routing; rate allocation and scheduling; power control; and channel allocation - and finally solved by a low-complexity distributed method. Simulation results show that the proposed distributed algorithm significantly improves the network throughput and energy efficiency compared with previous algorithms.

Power-Efficient Rate Allocation of Wireless Access Networks with Sleep-Operation Management for Multihoming Services

  • Lee, Joohyung;Yun, Seonghwa;Oh, Hyeontaek;Newaz, S.H. Shah;Choi, Seong Gon;Choi, Jun Kyun
    • Journal of Communications and Networks
    • /
    • 제18권4호
    • /
    • pp.619-628
    • /
    • 2016
  • This paper describes a theoretical framework for rate allocation to maximize the power efficiency of overall heterogeneous wireless networks whose users are assumed to have multihoming capabilities. Therefore, the paper first presents a power consumption model considering the circuit power and radio transmission power of each wireless network. Using this model, two novel power efficient rate allocation schemes (PERAS) for multihoming services are proposed. In this paper, the convex optimization problem for maximizing the power efficiency over wireless networks is formulated and solved while guaranteeing the required quality of service (QoS). Here, both constant bit rate and variable bit rate services are considered. Furthermore, we extend our theoretical framework by considering the sleep-operation management of wireless networks. The performance results obtained from numerical analysis reveal that the two proposed schemes offer superior performance over the existing rate allocation schemes for multihoming services and guarantee the required QoS.

중재계임을 이용한 송전비용배분비율 결정에 관한 분석 (Analysis on the Decision of Transmission Cost Allocation Rate Using the Arbitration Game)

  • 정구형;유청일;강동주;한석만;김발호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.375-377
    • /
    • 2002
  • In many parts of the world. the electricity industry is undergoing unprecedented changes. Hence, in order to reform the electricity industry readily and efficiently and minimize the confusion by these restructuring, it is required the systematic studies related to transmission pricing and transmission cost allocation issues. However, even now the basis of transmission cost allocation rate is not equipped so that the regulation body has determined the allocating rate under the common practice. In this paper it is demonstrated that the decision of transmission cost allocation rate is the regulation body's own right. For the analysis, game theory is applied to the procedure determining this rate and the competition to determine this rate between generators and distributors is modeled as the arbitration game.

  • PDF

Achievable Power Allocation Interval of Rate-lossless non-SIC NOMA for Asymmetric 2PAM

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제10권2호
    • /
    • pp.1-9
    • /
    • 2021
  • In the Internet-of-Things (IoT) and artificial intelligence (AI), complete implementations are dependent largely on the speed of the fifth generation (5G) networks. However, successive interference cancellation (SIC) in non-orthogonal multiple access (NOMA) of the 5G mobile networks can be still decoding latency and receiver complexity in the conventional SIC NOMA scheme. Thus, in order to reduce latency and complexity of inherent SIC in conventional SIC NOMA schemes, we propose a rate-lossless non-SIC NOMA scheme. First, we derive the closed-form expression for the achievable data rate of the asymmetric 2PAM non-SIC NOMA, i.e., without SIC. Second, the exact achievable power allocation interval of this rate-lossless non-SIC NOMA scheme is also derived. Then it is shown that over the derived achievable power allocation interval of user-fairness, rate-lossless non-SIC NOMA can be implemented. As a result, the asymmetric 2PAM could be a promising modulation scheme for rate-lossless non-SIC NOMA of 5G networks, under user-fairness.

Transmit Antenna Selection for Quadrature Spatial Modulation Systems with Power Allocation

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.98-108
    • /
    • 2020
  • We consider transmit antenna selection combined with power allocation for quadrature spatial modulation (QSM) systems to improve the error rate performance. The Euclidean distance-based joint optimization criterion is presented for transmit antenna selection and power allocation in QSM. It requires an exhaustive search and thus high computational complexity. Thus its reduced-complexity algorithm is proposed with a strategy of decoupling, which is employed to successively find transmit antennas and power allocation factors. First, transmit antennas are selected without considering power allocation. After selecting transmit antennas, power allocation factors are determined. Simulation results demonstrate considerable performance gains with lower complexity for transmit antenna selected QSM systems with power allocation, which can be achieved with limited rate feedback.

Analysis on Achievable Data Rate of Asymmetric 2PAM for NOMA

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.34-41
    • /
    • 2020
  • Nowadays, the advanced smart convergences of the artificial intelligence (AI) and the internet of things (IoT) have been more and more important, in the fifth generation (5G) and beyond 5G (B5G) mobile communication. In 5G and B5G mobile networks, non-orthogonal multiple access (NOMA) has been extensively investigated as one of the most promising multiple access (MA) technologies. In this paper, we investigate the achievable data rate for the asymmetric binary pulse amplitude modulation (2PAM), in non-orthogonal multiple access (NOMA). First, we derive the closed-form expression for the achievable data rate of the asymmetric 2PAM NOMA. Then it is shown that the achievable data rate of the asymmetric 2PAM NOMA reduces for the stronger channel user over the entire range of power allocation, whereas the achievable data rate of the asymmetric 2PAM NOMA increases for the weaker channel user improves over the power allocation range less than 50%. We also show that the sum rate of the asymmetric 2PAM NOMA is larger than that of the conventional standard 2PAM NOMA, over the power allocation range larger than 25%. In result, the asymmetric 2PAM could be a promising modulation scheme for NOMA of 5G systems, with the proper power allocation.

멀티셀 CDMA 데이터 사용자를 위한 순방향 링크에서의 2계층 전송출력/전송률 할당체계 (Two-Level Power and Rate Allocation Scheme on the Forward Link for Multicell CDMA Data Users)

  • 장근녕;이기동
    • 대한산업공학회지
    • /
    • 제31권3호
    • /
    • pp.219-227
    • /
    • 2005
  • In this paper, an optimal power and rate allocation model is mathematically formulated on the forward link of multicell CDMA mobile systems. The model maximizes total utility considering data rates and fairness among cells under delay and PRER (Post RPL Error Rate) constraints. The two-level power and rate allocation scheme is suggested to solve the proposed model. Experimental results show that the proposed scheme provides a good solution in a fast time.

Power allocation-Assisted secrecy analysis for NOMA enabled cooperative network under multiple eavesdroppers

  • Nayak, V. Narasimha;Gurrala, Kiran Kumar
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.758-768
    • /
    • 2021
  • In this work, the secrecy of a typical wireless cooperative dual-hop non-orthogonal multiple access (NOMA)-enabled decode-and-forward (DF) relay network is investigated with the impact of collaborative and non-collaborative eavesdropping. The system model consists of a source that broadcasts the multiplexed signal to two NOMA users via a DF relay, and information security against the eavesdropper nodes is provided by a helpful jammer. The performance metric is secrecy rate and ergodic secrecy capacity is approximated analytically. In addition, a differential evolution algorithm-based power allocation scheme is proposed to find the optimal power allocation factors for relay, jammer, and NOMA users by employing different jamming schemes. Furthermore, the secrecy rate analysis is validated at the NOMA users by adopting different jamming schemes such as without jamming (WJ) or conventional relaying, jamming (J), and with control jamming (CJ). Simulation results demonstrate the superiority of CJ over the J and WJ schemes. Finally, the proposed power allocation outperforms the fixed power allocation under all conditions considered in this work.

Power Allocation Method of Downlink Non-orthogonal Multiple Access System Based on α Fair Utility Function

  • Li, Jianpo;Wang, Qiwei
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.306-317
    • /
    • 2021
  • The unbalance between system ergodic sum rate and high fairness is one of the key issues affecting the performance of non-orthogonal multiple access (NOMA) system. To solve the problem, this paper proposes a power allocation algorithm to realize the ergodic sum rate maximization of NOMA system. The scheme is mainly achieved by the construction algorithm of fair model based on α fair utility function and the optimal solution algorithm based on the interior point method of penalty function. Aiming at the construction of fair model, the fair target is added to the traditional power allocation model to set the reasonable target function. Simultaneously, the problem of ergodic sum rate and fairness in power allocation is weighed by adjusting the value of α. Aiming at the optimal solution algorithm, the interior point method of penalty function is used to transform the fair objective function with unequal constraints into the unconstrained problem in the feasible domain. Then the optimal solution of the original constrained optimization problem is gradually approximated within the feasible domain. The simulation results show that, compared with NOMA and time division multiple address (TDMA) schemes, the proposed method has larger ergodic sum rate and lower Fairness Index (FI) values.

멀티셀 CDMA 이동통신시스템을 위한 전송출력/전송률 할당체계 (Power and Rate Allocation Scheme for Multicell CDMA mobile systems)

  • 장근녕
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2003년도 추계학술대회 및 정기총회
    • /
    • pp.215-218
    • /
    • 2003
  • 본 논문에서는 다수의 셀로 구성된 CDMA 시스템의 순방향 링크를 대상으로 지연 및 PRER 제약과 전송출력 제약 하에서 데이터 전송률과 사용자간 형평성을 반영한 총효용을 최대화하기 위한 각 기지국의 총평균전송출력과 각 사용자의 데이터 전송률 할당 체계를 제시한다. 실험을 통해 모든 셀을 동시에 고려하는 OPARS(Optimal Power and Rate Allocation Scheme)가 각 셀을 개별적으로 고려하는 SPRAS(Separate Power and Rate Allocation Scheme)에 비해 더 좋은 해를 제공한다는 것을 알 수 있었다.

  • PDF