• Title/Summary/Keyword: Rate Sensitive Model

Search Result 219, Processing Time 0.032 seconds

Severity Measurement Methods and Comparing Hospital Death Rates for Coronary Artery Bypass Graft Surgery (관상동맥우회술의 중증도 측정과 병원 사망률 비교에 관한 연구)

  • Ahn, Hyung-Sik;Shin, Young-Soo;Kwon, Young-Dae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.3
    • /
    • pp.244-252
    • /
    • 2001
  • Objective : Health insurers and policy makers are increasingly examining the hospital mortality rate as an indicator of hospital quality and performance. To be meaningful, a risk-adjustment of the death rates must be implemented. This study reviewed 5 severity measurement methods and applied them to the same data set to determine whether judgments regarding the severity-adjusted hospital mortality rates were sensitive to the specific severity measure. Methods : The medical records of 584 patients who underwent coronary artery bypass graft surgery in 6 general hospitals during 1996 and 1997 were reviewed by trained nurses. The MedisGroups, Disease Staging, Computerized Severity Index, APACHE III and KDRG were used to quantify severity of the patients. The predictive probability of death was calculated for each patient in the sample from a multivariate logistic regression model including the severity score, age and sex to evaluate the hospitals' performance, the ratio of the observed number of deaths to the expected number for each hospital was calculated. Results : The overall in-hospital mortality rate was 7.0%, ranging from 2.7% to 15.7% depending on the particular hospital. After the severity adjustment, the mortality rates for each hospital showed little difference according to the severity measure. The 5 severity measurement methods varied in their statistical performance. All had a higher c statistic and $R^2$ than the model containing only age and sex. There was a little difference in the relative hospital performance evaluation by the severity measure. Conclusion : These results suggest that judgments regarding a hospital's performance based on severity adjusted mortality can be sensitive to the severity measurement method. Although the 5 severity measures regarding hospital performance concurred, more often than would be expected by chance, the assessment of an individual hospital mortality rates varied by the different severity measurement method used.

  • PDF

ON THEIL'S METHOD IN FUZZY LINEAR REGRESSION MODELS

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.185-198
    • /
    • 2016
  • Regression analysis is an analyzing method of regression model to explain the statistical relationship between explanatory variable and response variables. This paper propose a fuzzy regression analysis applying Theils method which is not sensitive to outliers. This method use medians of rate of increment based on randomly chosen pairs of each components of ${\alpha}$-level sets of fuzzy data in order to estimate the coefficients of fuzzy regression model. An example and two simulation results are given to show fuzzy Theils estimator is more robust than the fuzzy least squares estimator.

Performance Prediction of Smal I Rocket Engine Combustion And Estimation of Experimental Results (소형 로켓 엔진 연소의 성능 예측 및 실험결과 평가)

  • Park, Jeong;Kim, Yong-Wook;Kim, Young-Han;Chung, Yong-Gahp;Cho, Nam-Kyung;Oh, Seung-Hyup
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.209-217
    • /
    • 1999
  • A model for depicting the rocket engine combustion process is presented and basic experiments near a design point are provided with a FOOF type of unlike impinging injector for RP-I fuel and liquid-oxygen. The model is based on the assumption that the vaporization is the rate-controlling combustion process. The effects of initial drop size and initial drop velocity are systematically shown and discussed. It is seen that in the midst of considered parameters the change of initial drop size is more sensitive to the performance. The proposed model describes qualitative trends of combustion process well despite of its simplicity.

  • PDF

User Acceptance Enablers according to the types of identity on Virtual Community

  • Han, In-Goo;Kim, Min-Soo;Lee, Hyoung-Yong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.375-383
    • /
    • 2004
  • Despite the fact that virtual communities on the Internet have been growing at an exponential rate in recent years, little research has been done on the characteristics of virtual communities. In order to better understand and manage the activities of virtual communities, a theoretical model is proposed in this paper. The objective of this paper is to clarify the factors as they are related to the Technology Acceptance Model. In particular the relationship among identities, trust, and other factors are hypothesized. Using the Technology Acceptance Model, this research showed that the importance of identity and trust in virtual communities. The members of virtual communities interact continuously and share an identity. According to the identity type, different ways of stimulating the members are necessary in order to facilitate participation in activities of virtual communities. The virtual communities of a more utilitarian identity are more sensitive to trust in members than trust in the service provider, and members of a more utilitarian identity are inclined to exchange information with each other.

  • PDF

Performance Prediction of Rocket Engine Combustion and Estimation of Experimental Results (로켓 엔진의 연소 성능 예측 및 시험)

  • Park, Jeong;Kim, Yong-Wook;Kim, Young-Han;Chung, Yong-Gahp;Cho, Nam-Kyung;Oh, Seung-Hyub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.718-724
    • /
    • 2000
  • A model for depicting the rocket engine combustion process is presented and several experiments near a design point are provided with a FOOF type of unlike impinging injector for a propellant combination of Jet A-1 fuel and liquid-oxygen. The model is based on the assumption that the vaporization is the rate-controlling combustion process. The effects of initial drop size and initial drop velocity are systematically shown and discussed. It is seen that in the midst of considered parameters the change of initial drop size is more sensitive to the performance. The proposed model describes qualitative trends of combustion process well despite of its simplicity.

Growth Simulation of Ilpumbyeo under Korean Environment Using ORYZA2000: III. Validation of Growth Simulation

  • Lee Chung-Kuen;Shin Jae-Hoon;Shin Jin-Chul;Kim Duk-Su;Choi Kyung-Jin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.104-105
    • /
    • 2004
  • [ $\bigcirc$ ] In the phenology model of ORYZA2000, the effect of photoperiod on the developmental rate was a little ignored because most crop parameters were measured with IRRI varieties which are insensitive to photoperiod, therefore it is very difficult to apply this phenology model directly to Korean varieties which are usually sensitive to photoperiod. $\bigcirc$ After introducing PPFAC and PPSE to improve the phenology model, the precision of heading date prediction was improved but not satisfied. $\bigcirc$ In the growth simulation using data from several regions, yield tended to be overestimated under high nitrogen applicated condition. $\bigcirc$ The precision of yield was much improved by introducing nitrogen use efficiency, but still different between regions because of different soil fertility or property of irrigation water between regions

  • PDF

The Analysis of Random Propagating Worms using Network Bandwidth

  • Ko, Kwang-Sun;Jang, Hyun-Su;Park, Byuong-Woon;Eom, Young-Ik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.191-204
    • /
    • 2010
  • There is a well-defined propagation model, named the random constant spread (RCS) model, which explains worms that spread their clones with a random scanning strategy. This model uses the number of infected hosts in a domain as a factor in the worms' propagation. However, there are difficulties in explaining the characteristics of new Internet worms because they have several considerable new features: the denial of service by network saturation, the utilization of a faster scanning strategy, a smaller size in the worm's propagation packet, and to cause maximum damage before human-mediated responses are possible. Therefore, more effective factors are required instead of the number of infected hosts. In this paper, the network bandwidth usage rate is found to be an effective factor that explains the propagations of the new Internet worms with the random scanning strategy. The analysis and simulation results are presented using this factor. The simulation results show that the scan rate is more sensitive than the propagation packet for detecting worms' propagations.

Comprehensive Empirical Equation for Assessing Atmospheric Corrosion Progression of Steel Considering Environmental Parameters

  • Sil, Arjun;Kumar, Vanapalli Naveen
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.174-188
    • /
    • 2020
  • Atmospheric corrosion is a natural surface degradation process of metal due to changes in environmental parameters in the surrounding atmosphere. It is very sensitive to environmental parameters such as temperature, relative humidity, sulphur dioxide, and chloride, making it a major global economic challenge. Existing forecasting empirical corrosion models including the ISO standard are based on statistical analysis of experimental studies without considering the behavior of atmospheric parameters. The present study proposes a reliable global empirical model for estimating short and long-term atmospheric corrosion rates based on environmental parameters and corrosion mechanisms obtained from a parametric study. Repercussion of atmospheric corrosion rate due to individual and combined influences of environmental parameters specifies their importance in the estimation. New global empirical coefficients obtained for environmental parameters are statistically established (R2 =0.998) with 95% confidence limit. They are validated using experimental datasets of existing studies observed at 88 different continental locations. The current proposed model can predict atmospheric corrosion by means of corrosion formation mechanisms influenced by combined effects of environmental parameters, further abating applicability limitations of location and time.

Assessing Climate Change Impacts on Hydrology and Water Quality using SWAT Model in the Mankyung Watershed (SWAT 모형을 이용한 기후변화에 따른 만경강 유역에서의 수문 및 수질 영향 평가)

  • Kim, Dong-Hyeon;Hwang, Syewoon;Jang, Taeil;So, Hyunchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.83-96
    • /
    • 2018
  • The objective of this study was to estimate the climate change impact on water quantity and quality to Saemanguem watershed using SWAT (Soil and water assessment tool) model. The SWAT model was calibrated and validated using observed data from 2008 to 2017 for the study watershed. The $R^2$ (Determination coefficient), RMSE (Root mean square error), and NSE (Nash-sutcliffe efficiency coefficient) were used to evaluate the model performance. RCP scenario data were produced from 10 GCM (General circulation model) and all relevant grid data including the major observation points (Gusan, Jeonju, Buan, Jeongeup) were extracted. The systematic error evaluation of the GCM model outputs was performed as well. They showed various variations based on analysis of future climate change effects. In future periods, the MIROC5 model showed the maximum values and the CMCC-CM model presented the minimum values in the climate data. Increasing rainfall amount was from 180mm to 250mm and increasing temperature value ranged from 1.7 to $5.9^{\circ}C$, respectively, compared with the baseline (2006~2017) in 10 GCM model outputs. The future 2030s and 2070s runoff showed increasing rate of 16~29% under future climate data. The future rate of change for T-N (Total nitrogen) and T-P (Total phosphorus) loads presented from -26 to +0.13% and from +5 to 47%, respectively. The hydrologic cycle and water quality from the Saemanguem headwater were very sensitive to projected climate change scenarios so that GCM model should be carefully selected for the purpose of use and the tendency analysis of GCM model are needed if necessary.

Development of Productivity Prediction Model according to Choke Size and Gas Injection Rate by using ANN(Artificial Neural Network) at Oil Producer (오일 생산정에서 쵸크사이즈와 가스주입량에 따른 생산성 예측 인공신경망 모델 개발)

  • Han, Dong-kwon;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.90-103
    • /
    • 2018
  • This paper presents the development of two ANN models which can predict an optimum production rate by controlling choke size in oil well, and gas injection rate in gas-lift well. The input data was solution gas-oil ratio, water cut, reservoir pressure, and choke size or gas injection rate. The output data was wellhead pressure and production rate. Firstly, a range of each parameters was decided by conducting sensitive analysis of input data for onshore oil well. In addition, 1,715 sets training data for choke size decision model and 1,225 sets for gas injection rate decision model were generated by nodal analysis. From the results of comparing between the nodal analysis and the ANN on the same reservoir system showed that the correlation factors were very high(>0.99). Mean absolute error of wellhead pressure and oil production rate was 0.55%, 1.05% with the choke size model, respectively. And the gas injection rate model showed the errors of 1.23%, 2.67%. It was found that the developed models had been highly accurate.