• 제목/요약/키워드: Rat cortical cell

검색결과 80건 처리시간 0.034초

Dopamine Modulates Corticostriatal Synaptic Transmission through Both $D_1$ and $D_2$ Receptor Subtypes in Rat Brain

  • Lee, Hyun-Ho;Choi, Se-Joon;Kim, Ki-Jung;Cho, Hyeong-Seok;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권5호
    • /
    • pp.263-268
    • /
    • 2005
  • Striatum has important roles in motor control, habitual learning and memory. It receives glutamatergic inputs from neocortex and thalamus, and dopaminergic inputs from substantia nigra. We examined effects of dopamine (DA) on the corticostriatal synaptic transmission using in vitro extracellular recording technique in rat brain corticostriatal slices. Synaptic responses were elicited by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. Corticostriatal population spike (PS) amplitudes were decreased ($39.4{\pm}7.9$%) by the application of $100{\mu}M$ DA. We applied receptor subtype specific agonists and antagonists and characterized the modulation of corticostriatal synaptic transmission by different DA receptor subtypes. $D_2$ receptor agonist (quinpirole), antagonist (sulpiride), and $D_1$ receptor antagonist (SKF 83566), but not $D_1$ receptor agonist (SKF 38393), induced significantly the reduction of striatal PS. Pretreatment neither with SKF 83566 nor sulpiride significantly affected corticostriatal synaptic inhibition by DA. However, the inhibition of DA was completely blocked by pretreatment with mixed solution of both SKF 83566 and sulpiride. These results suggest that DA inhibits corticostriatal synaptic transmission through both $D_1$ and $D_2$ receptors in concert with each other.

흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)에 의한 신경세포사 저해 효과 (Inhibition effect of neuronal death by Scutellaria baicalensis GEORGI Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells)

  • 김완식;정승현;신길조;문일수;이원철
    • 생명과학회지
    • /
    • 제17권1호
    • /
    • pp.143-149
    • /
    • 2007
  • Scutellaria baicalensis GEORGI(SB) is used in oriental medicine for the treatment of incipient strokes. Although it has been reported that SB is neuroprotective in a hypoxia model, its mechanism is poorly understood. Here, we investigated the effect of SB on the modulation of retinoic acid receptor a (RARa). Rat cerebrocortical cells were grown in neurobasal medium. On DIV12 cells were treated with SB $(20{\mu}g/ml)$ and given a hypoxic shock $(2%\;O_2/5%\;CO_2,\;3hr)$ on DIV14. In situ hybridization using cRNA probe revealed that RARa mRNA punctae are distributed, in addition to nucleus, throughout neuronal dendrites, where SB upregulated its density by 69.8% (p=0.001) and 129.8% (p=0.001) in both normoxia and hypoxia, respectively. At the protein level, SB upregulated RARa in the neuronal soma by 78.8% (p=0.004) and 23.6% (p=0.001) in both normoxia and hypoxia, respectively. These results indicate that SB upregulates RARa in both normoxia and hypoxia, which might contribute to the neuroprotection.

흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)에 의한 heme oxygenase-1의 표현증가 (Upregulation of heme oxygenase-1 by Scutellaria baicalensis GEORGI Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells.)

  • 이원철;김완식;신길조;문일수;정승현
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.706-713
    • /
    • 2007
  • Scutellaria baicalensis GEORGI(SB) is used in oriental medicine for the treatment of incipient strokes. Although it has been reported that SB is neuroprotective in a hypoxia model, its mechanism is poorly understood. Here, we investigated the effect of SB on the modulation of heme oxygenase-1(HO-1), which has important biological roles in regulating mitochondrial heme protein turnover and in protecting against conditions such as hypoxia, neurodegenerative diseases, or sepsis. Rat cerebrocortical day In vitro(DIV)12 cells were grown in neurobasal medium. On DIV12 cells were treated with SB($20{\mu}g/ml$) and given a hypoxic shock ($2%\;O_2/5%\;CO_2,\;3\;hr$) on DIV14. In situ hybridization results revealed that SB upregulated HO-1 mRNA in neuronal dendrites in both normoxia and hypoxia(38.5% and 59.2%, respectively). At the protein level, SB upregulated HO-1 in the neuronal soma in both normoxia and hypoxia(22.4% and 15.7%, respectively). Interestingly, most significant increase was associated with astrocytes, which increased HO-1 protein by 77.5% compared to SB-untreated culture. These results indicate that SB upregulates both neuronal and glial HO-1 expression, which contributes to the neuroprotection efficacy in hypoxia).

배양한 흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)이 유전자 표현에 미치는 영향 (Effects of Scutellaria baicalensis GEORGI on Gene Expression in a Hypoxic Model of Cultured Rat Cortical Cells)

  • 정승현;신길조;이원철;김성배
    • 대한한방내과학회지
    • /
    • 제25권4호
    • /
    • pp.324-336
    • /
    • 2004
  • Objectives : The purpose of this investigation is to evaluate the effects of Scutellaria baicalensis GEORGI on alteration in gene expression in a hypoxia model using cultured rat cortical cells. Methods : E18 rat cortical cells were grown in a Neurobasal medium containing B27 supplement. On 12 DIV, Scutellaria baicalensis GEORGI(20 ug/ml) was added to the culture media and left for 24 hrs. On 11 DIV, cells were given a hypoxic insult $(2%\;O_2/5%\;CO_2,\;37^{\circ}C,\;3\;hrs)$, returned to normoxia and cultured for another 24 hrs. Total RNA was prepared from Scutellaria baicalensis GEORGI-untreated (control) and -treated cultures and alteration in gene expression was analysed by microarray using rat 5K-TwinChips. Results : For most of the genes altered in expression, the Global M values were between -0.5 to +0.5. Among these, 1143 genes increased in their expression by more than Global M +0.1, while 1161 genes decreased by more than Global M -0.1. Effects on some of the genes whose functions are implicated in neural viability are as follows: 1) The expression of apoptosis-related genes such as Bad (Global M = 0.39), programmed cell death-2(Pdcd2) (Global M = 0.20) increased, while Purinergic receptor P2X(P2rxl) Global M = -0.22), Bc12-like1(Bc1211)(Global M = -0.19) decreased. 2) The expression of 'response to stress-related genes such as antioxidation-related AMP-activated protein kinase subunit gamma 1 gene (Prkag1) (Global M = 0.14), catalase gene (Global M = 0.14) and Heme Oxygenase(Hmoxl) increased. 3) The expression of Fos like antigen 2 (Fos12) expressed in neurons that survive ischemic insult increased (Global M = 0.97). Conclusions : these data suggest that Scutellaria baicalensis GEORGI increases the expression of antiapoptosis- and antioxidation- related genes in a way that can not yet be explained.

  • PDF

흰쥐 대뇌세포배양의 저산소증모델에서 루이보스차 침제에 의한 신경세포 보호작용 (Neuronal Protection by Rooibos (Aspalathus linearis) Tea Infusions in a Hypoxic Model of Cultured Rat Cortical Neurons)

  • Moon, Il-Soo;Ko, Bok-Hyun
    • 생명과학회지
    • /
    • 제14권2호
    • /
    • pp.291-295
    • /
    • 2004
  • 루이보스(Aspalathus linearis; RB)는 콩과식물로서 남아프리카 Cape Province의 북서부 산악지역에 자생한다. 루이보스차 침제는 가는 가지와 잎의 발효산물로서 플리보노이드류와 페놀산이 있어 강한 항산화활성을 갖는 것으로 알려져 있다. 본 연구에서는 저산소증모델에서 루이보스차 침제가 배양한 흰쥐 대뇌세포의 스트레스를 완화하는지에 대한 연구하였다. 배지로 누출된 LDH의 정량실험에 의하면 루이보스는 정상산소환경 및 저산소증에서 함량 의존적으로(10-100 $\mu\textrm{g}$/ml) 각각 6-18% 및 2-24%의 세포생존율을 증가시켰다(16 DIV 세포, 처리 후 3일째). CFP-Hsc70 단백질을 표현시킨 신경세포의 모양을 관찰하였을때 루이보스(50 $\mu\textrm{g}$/ml)는 저산소처리 후 5일에 세포체에 수포가 있는 세포의 수를 대조군(55.4$\pm$4.59%)에 비하여 유의하게 감소시켰다(40.9$\pm$6.3%). 이러한 결과들은 루이보스차가 저산소증에서 신경세포를 보호함을 의미하며, 신경세포 손상을 예방 또는 치료하는데 응용될 수 있을 것으로 보인다.

Synergistic Increase of BDNF Release from Rat Primary Cortical Neuron by Combination of Several Medicinal Plant-Derived Compounds

  • Jeon, Se-Jin;Bak, Hae-Rang;Seo, Jung-Eun;Kwon, Kyung-Ja;Kang, Young-Sun;Kim, Hee-Jin;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.39-47
    • /
    • 2010
  • Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor involved in neuronal differentiation, plasticity, survival and regeneration. BDNF draws massive attention mainly due to the potential as a therapeutic target in neurological diseases such as depression and Alzheimer's disease. In a primary screening for the natural compounds enhancing BDNF release from cultured rat primary cortical neuron, we found that compounds such as baicalein, tanshinone IIa, cinnamic acid, epiberberine, genistein and wogonin among many others increased BDNF release. All the compounds at $0.1{\mu}M$ of concentration barely showed stimulatory effect on BDNF induction, however, their combination (mixture 1; baicalein, tanshinone IIa and cinnamic acid, mixture 2; epiberberine, genistein and wogonin) showed synergistic increase in BDNF release as well as mRNA and protein expression. The level of BDNF expression was comparable to the maximum BDNF stimulation attainable by a positive control oroxylin A ($20{\mu}M$) without cell toxicity as determined by MTT analysis. Both mixtures synergistically increased the phosphorylation of extracellular signal-regulated kinase (ERK) as well as cAMP response element binding protein (CREB), an immediate and essential regulator of BDNF expression. Similar to these results, mixture of these compounds synergistically inhibited the up-regulation of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide treatments in rat primary astrocytes. These results suggest that the combinatorial treatment of natural compounds in lower concentration might be a useful strategy to obtain sufficient BDNF stimulation in neurological disease condition such as depression, while minimizing potential side effects and toxicity of higher concentration of a single compound.

배양한 흰주 대뇌세포에서 2,3,7,8-tetrachlorodibenzo-p-dioxin 이 2',3'-cyclic nucleotide 3'-phosphodiesterase(CNPase)의 표현에 미치는 영향 (Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase(CNPase) in rat cortical neurons in culture)

  • 조선정;정재섭;김덕규;신승철;고옥;정용욱;고복현;진익렬;문일수
    • 생명과학회지
    • /
    • 제11권4호
    • /
    • pp.346-353
    • /
    • 2001
  • 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) a prototype of the highly toxid halogenated arylhydrocarbons, bioaccumulates in the food chain and induces a complex spectrum of pathological responses. However, its effect on the nerve system is relatively not well studied. In this study we evaluated TCDDs cytotoxicity on the cortical cell and investigated its effect on the expression 2,3-cyclic nucleotide 3-phosphodiesterase(CNPase), a marker for oilgodendrocytes, The survival rates of 4 DIV cortical cells, that are dissociated from E18 rat cortex and maintained in the presence of TCDD, were 88.8, 83.6, 78.5, and 78.6%(5,10, 20 and 50 nM, respectively) where the reduction in 20 and 50mM TCDD were statistically very significant(p<0.01). Imunocytochemistry of cultured cells revealed that the intensities of immunostaining with an anti-CNP1&2 antibody depended on the concentrations of the toxin. Immunoblot analysis also showed differential expression of CNP1 and CNP2 in the presence of TCDD; the CNP1 expression was dose-dependently decreased. Interestingly, the expression of CNP2 in the presence if TDCC; the CNP1 expression was dose-dependently decreased. Interestingly, the expression of CNP2 fluctuated with the TCDD concentration. These results indicated that CNP1 and 2 are differentially regulated by TCDD, implying the functions of oligodendrocytes are modulated by the toxin.

  • PDF

Neuroprotective and Antioxidant Effects of the Butanol Fraction Prepared from Opuntia ficus-indica var. saboten

  • Cho, Jung-Sook;Han, Chang-Kyun;Lee, Yong-Sup;Jin, Chang-Bae
    • Biomolecules & Therapeutics
    • /
    • 제15권4호
    • /
    • pp.205-211
    • /
    • 2007
  • The fruits and stems of Opuntia ficus-indica var. saboten have been reported to exhibit a variety of pharmacological actions, including antioxidant, analgesic, anti-inflammatory, and anti-ulcer effects. In the present study, we evaluated effects of the butanol fraction (SK OFB901) prepared from the 50% ethanol extract of the stems on various types of neuronal injuries induced by oxidative stress, excitotoxins, and amyloid ${\beta}\;(A_{\beta})$ in primary cultured rat cortical cells. Its antioxidant and radical scavenging activities were also evaluated by cell-free bioassays. We found that SK OFB901 strongly inhibited the oxidative neuronal damage induced by $H_2O_2$ or xanthine/xanthine oxidase. In addition, it exhibited marked inhibition of the excitotoxic neuronal damage induced by glutamate, N-methyl-D-aspartic acid, or kainate. Furthermore, the $A_{\beta(25-35)}$-induced neurotoxicity was also significantly attenuated by SK OFB901. It was found to inhibit lipid peroxidation initiated by $Fe^{2+}$ and L-ascorbic acid in rat brain homogenates and scavenge 1,1-diphenyl-2-picrylhydrazyl free radicals. These results indicate that the butanol fraction prepared from the stems of Opuntia ficus-indica var. saboten exerts potent antioxidant and neuroprotective effects through multiple mechanisms, implying its potential applications for the prevention or management of neurodegenerative disorders associated with oxidative stress, excitotoxicity, and $A{\beta}$.

과산화수소수로 유도된 배양신경세포손상에 대한 참죽나무잎 추출물의 보호효과 (Extract of Cedrela sinensis Leaves Protects Neuronal Cell Damage Induced by Hydrogen Peroxide in Cultured Rat Neurons)

  • 이순복;김주연;조순옥;반주연;주현수;배기환;성연희
    • 한국약용작물학회지
    • /
    • 제15권6호
    • /
    • pp.444-450
    • /
    • 2007
  • Dried leaves from Cedrela sinensis A. Juss. (CS), have been observed to possess various pharmacological activity and contain various antioxidant constituents. The protective effect of ethanol extract of CS on hydrogen peroxide $(H_2O_2)-induced$ neurotoxicity was examined using primary cultured rat cortical neurons in the present study. Exposure of cultured neurons to 100 ${\mu}M\;H_2O_2$ caused a significant neuronal death as assessed by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. The addition of CS, over a concentration range of 10 to $50{\mu}g/m{\ell}$, concentration-dependently prevented the $H_2O_2-induced$ neuronal apoptotic death. CS $(50{\mu}g/m{\ell})$ significantly inhibited $H_2O_2-induced$ elevation of the cytosolic $Ca^{2+}$ concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fluo-4 AM. CS (30 and $50{\mu}g/m{\ell})$ inhibited glutamate release and generation of reactive oxygen species (ROS) induced by $100{\mu}M\;H_2O_2$. These results suggest that CS may mitigate the $H_2O_2-induced$ neurotoxiciy by interfering with the increase of $[Ca^{2+}]_c$, and then inhibiting glutamate release and generation of ROS in cultured neurons.

Nobiletin attenuates neurotoxic mitochondrial calcium overload through K+ influx and ∆Ψm across mitochondrial inner membrane

  • Lee, Ji Hyung;Amarsanaa, Khulan;Wu, Jinji;Jeon, Sang-Chan;Cui, Yanji;Jung, Sung-Cherl;Park, Deok-Bae;Kim, Se-Jae;Han, Sang-Heon;Kim, Hyun-Wook;Rhyu, Im Joo;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권3호
    • /
    • pp.311-319
    • /
    • 2018
  • Mitochondrial calcium overload is a crucial event in determining the fate of neuronal cell survival and death, implicated in pathogenesis of neurodegenerative diseases. One of the driving forces of calcium influx into mitochondria is mitochondria membrane potential (${\Delta}{\psi}_m$). Therefore, pharmacological manipulation of ${\Delta}{\psi}_m$ can be a promising strategy to prevent neuronal cell death against brain insults. Based on these issues, we investigated here whether nobiletin, a Citrus polymethoxylated flavone, prevents neurotoxic neuronal calcium overload and cell death via regulating basal ${\Delta}{\psi}_m$ against neuronal insult in primary cortical neurons and pure brain mitochondria isolated from rat cortices. Results demonstrated that nobiletin treatment significantly increased cell viability against glutamate toxicity ($100{\mu}M$, 20 min) in primary cortical neurons. Real-time imaging-based fluorometry data reveal that nobiletin evokes partial mitochondrial depolarization in these neurons. Nobiletin markedly attenuated mitochondrial calcium overload and reactive oxygen species (ROS) generation in glutamate ($100{\mu}M$)-stimulated cortical neurons and isolated pure mitochondria exposed to high concentration of $Ca^{2+}$ ($5{\mu}M$). Nobiletin-induced partial mitochondrial depolarization in intact neurons was confirmed in isolated brain mitochondria using a fluorescence microplate reader. Nobiletin effects on basal ${\Delta}{\psi}_m$ were completely abolished in $K^+-free$ medium on pure isolated mitochondria. Taken together, results demonstrate that $K^+$ influx into mitochondria is critically involved in partial mitochondrial depolarization-related neuroprotective effect of nobiletin. Nobiletin-induced mitochondrial $K^+$ influx is probably mediated, at least in part, by activation of mitochondrial $K^+$ channels. However, further detailed studies should be conducted to determine exact molecular targets of nobiletin in mitochondria.