• Title/Summary/Keyword: Rare metals

Search Result 213, Processing Time 0.027 seconds

Solvent Extraction of Zr(IV) and Hf(IV) from Sulfuric Acid Solutions by Acidic Extractants and Their Mixtures with TBP (황산용액에서 양이온계 추출제 및 TBP와의 혼합추출제에 의한 지르코늄(IV)과 하프늄(IV)의 용매추출)

  • Wang, Ling Yun;Lee, Man Seung
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.3-9
    • /
    • 2016
  • Separation of Zr(IV) and Hf(IV) from sulfuric acid solutions was investigated by extraction with several acidic extractants such as Versatic acid, LIX 63, and Cyanex 301. From strong sulfuric acid solutions, the separation of Zr(IV) and Hf(IV) by Versatic acid and LIX 63 was not possible, while selective extraction of Hf(IV) over Zr(IV) was obtained with Cyanex 301. However, the extraction percentage of the two metals was much lower compared to that by D2EHPA. Mixing of TBP with Cyanex 301 and D2EHPA led to negative effect on the extraction and separation of the two metal ions. The difference in the extraction reaction and separation selectivity between HCl, $HNO_3$ and $H_2SO_4$ media with each extractant was discussed.

A Model on Price Forecasting of Natural Resources with Restricted Market (제한적 시장을 가지는 천연자원의 가격예측 모형에 관한 연구)

  • Shim, S.C.;Lee, S.J.;Oh, H.S.;Kim, B.K.;Kim, O.J.;Shin, D.W.;Shin, S.N.;Cho, M.H.;Jung, Y.H.;Song, I.C.;Cho, J.H.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.82-89
    • /
    • 2014
  • Recently, the mineral resource protection policies and regulations in production countries of natural resources including rare metals are becoming more stringent. Such environment makes which market has malfunction. In other word, those are not perfect or pure market. Therefore because each market of natural resources have special or unique characters, it is difficult to forecast their market prices. In this study, we constructed several models to estimate prices of natural resources using statistical tools like ARIMA and their business indices. And for examples, Indium and Coal were introduced.

Current Status of Nickel Smelting Technology (니켈 제련기술의 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.3-13
    • /
    • 2021
  • Nickel is widely used due to its excellent toughness, malleability and enhanced corrosion resistance. Therefore, nickel is indispensable in our daily lives, and it is widely used in basic to advanced applications such as stainless steel, super alloys and electronic devices. Recently, nickel has been widely used as the major material in secondary batteries and capacitors. The use of nickel continues to rise and has increased from 800 thousand tonnes per year worldwide in the 1970s to about 2 million tonnes in the 2010s. However, nickel is a representative rare metal and ranks 23rd among the abundant elements in the earth's crust. This study reviews the current status of the nickel smelting processes as well as the trend in production amount and use. Nickel is extracted by a wide variety of smelting methods depending on the type of ore. These smelting methods are essential for the development of new recycling processes that can extract nickel from secondary nickel resources.

Extractive Metallurgy of Lithium (리튬의 제련기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.3-15
    • /
    • 2022
  • Lithium is the lightest metal and the first metal in the periodic table. Lithium is used in a variety of applications, including the production of organolithium compounds, as an alloying addition to aluminum and magnesium, and as the anode in rechargeable lithium ion batteries especially for electronic devices and electric vehicles. Therefore, lithium is indispensable metal in our daily lives. The use of lithium continues to rise and has increased from about 14,000 tonnes per year worldwide in the 2000 to about 82,200 tonnes in the 2000. However, lithium is a representative rare metal and ranks 32nd among the abundant elements in the earth's crust. This study reviews the current status of the lithium extraction processes as well as the trend in production amount and use. Lithium is extracted by a various methods depending on the type of resources. These extraction methods are essential for the development of new recycling processes that can extract lithium from secondary lithium resources.

Present Status and Future Prospect of Quantum Dot Technology (양자점 (Quantum dot) 기술의 현재와 미래)

  • Hong, H.S.;Park, K.S.;Lee, C.G.;Kim, B.S.;Kang, L.S.;Jin, Y.H.
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.451-457
    • /
    • 2012
  • Nowadays, research and development on quantum dot have been intensively and comprehensively pursued worldwide in proportion to concurrent breakthrough in the field of nanotechnology. At present, quantum dot technology forms the main interdisciplinary basis of energy, biological and photoelectric devices. More specifically, quantum dot semiconductor is quite noteworthy for its sub-micro size and possibility of photonic frequency modulation capability by controlling its size, which has not been possible with conventionally fabricated bulk or thin film devices. This could lead to realization of novel high performance devices. To further understand related background knowledge of semiconductor quantum dot at somewhat extensive level, a review paper is presently drafted to introduce basics of (semiconductor) quantum dot, its properties, applications, and present and future market trend and prospect.

Optical and Long After-Glow Characteristics of $Eu^{2+}$, $Nd^{3+}$ doped $BaAl_{2}O_{4}$ Phosphorescent Crystals (($Eu^{2+}$, $Nd^{3+}$를 도핑시킨 $BaAl_{2}O_{4}$ 형광체의 광학 및 장잔광특성)

  • Kim, Jeong-Hwan;Kim, Byung-Gyu;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.174-180
    • /
    • 2002
  • In recent days, the study of a new phosphorescent phosphor has been performed in order to overcome the defect of sulfide phosphor and increase the brightness and long after-glow characteristic of phosphorescent phosphor. Particularly, sulfide phosphor usually used is so chemically unstable that the study of oxide phosphors are processing. $Eu^{2+}$, $Nd^{3+}$ doped Ba-Al-O phosphors sintered at $600{\sim}1500^{\circ}C$ for 2hours had the PL emission spectrum and after-glow over $1200^{\circ}C$. In this system, as the mole concentration of alumina increases, emission bands of phosphors moved from 500nm to 380nm. The optimum concentration of flux was 5wt% and after-glow characteristics of phosphors were found at the host material molar ratio ($BaCO_{3}:Al_{2}O_{3}$), 1:1 and 1:3.

Environment Emission and Material Flow Analysis of Chromium in Korea

  • Shin, Dong-won;Kim, Jeong-gon
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.187-196
    • /
    • 2015
  • With the stabilization of Korea's industrialization, it has become interested in the efficient use of rare metals, climate change and industrial environment and safety etc. It is thus making efforts to implement economic policies that address such issues. Therefore it is necessary to understand the demand, supply and use of metal materials. Since 2010, the Korean government has developed the integrated material flow methodology and has been trying to examine the demand, supply and use of metal materials. In 2013, the Korean government surveyed the material flow of chromium. Material flow analysis and environment emission of chromium were investigated 8 steps; (1) raw material, (2) first process, (3) Intermediate product, (4) End product, (5) Use/accumulation, (6) Collection, (7) Recycling, (8) Disposal. Chromium was used for stainless steel, alloy steel, coated sheets, refractory material and coating materials. Recycling was done mainly in use of stainless steel scrap. To ensure efficient use of chromium, process improvement is required to reduce the scrap in the intermediate product stage. In the process of producing of the products using chromium, it was confirmed that chromium was exposed to the environment. It requires more attention and protection against environment emission of chromium.

Removal of heavy metal and Hydrogen sulfide/Nitrophenol using Mackban-stone (맥반석을 이용한 중금속과 악취물질/nitrophenol의 제거)

  • Quen, Zhe-Xue;Yin, Cheng-Ri;Jin, Yin-Shu;Seok, Mi-Soo;Lee, Sung-Taik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2001
  • Mackban-stone effectively removed heavy metals, such as Fe, Cu, Cd, and Zn, with best removal of Fe and Cu. And the removal of heavy merals related with ion exchange of Ca. Mackban-stone is also an efficient deodorant of hydrogen sulfide and ammonia and inhibited the growth of E coli. The degradation rare of 4-nitropheno1 by Nocardioides sp. PNP101 and 2,4-dinitrophenol by Strain CJ1 and Rhodococcus sp. DNP 505 are increased by Mackbane-srone.

  • PDF

Theoretical Study of PDP Materials

  • Miyamoto, Akira;Onuma, Hiroaki;Kikuchi, Hiromi;Tsuboi, Hideyuki;Koyama, Michihisa;Endou, Akira;Takaba, Hiromitsu;Kubo, Momoji;Carpio, Carlos A.Del;Selvam, Parasuraman;Kajiyama, Hiroshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.121-124
    • /
    • 2006
  • A novel quantum chemical molecular dynamics program, 'Colors' was developed to simulate the electronic structure of rare earth-doped phosphor materials as well as the destruction processes of MgO protecting layer in plasma display panel (PDP). We have also developed a quantitative prediction method based on Monte Carlo simulation technique to evaluate the electrical conductivity of insulators, semiconductors, and metals as well as the spatial distribution of electron density by Colors code. All these original simulators enable us to study theoretically a variety of materials related to PDP.

  • PDF

Recovery of Platinum from Spent Petroleum Catalysts by Substrate Dissolution in Sulfuric Acid

  • Lee, Jae-Chun;Jinki Jeong;Kim, Wonbaek;Jang, Hee-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.472-477
    • /
    • 2001
  • Spent catalysts containing platinum were generated in petroleum refinery and other chemical industries. The reclamation of precious metals from such wastes has long been attempted in view of their rare, expensive and indispensable nature. In this study, the recovery of platinum from petroleum catalysts was attempted by a method consisting mainly of dissolving alumina substrate with sulfuric acid thereby concentrating insoluble platinum. Also, platinum dissolved partially in sulfuric acid was recovered by a cementation method using aluminum metal as a reductive agent. The effect of temperature, time, concentration of sulfuric acid. and pulp density on the dissolution of substrate was investigated. When the substrate of platinum catalyst was ${\gamma}$-AI$_2$O$_3$ about 95% alumina was dissolved in 6.0M sulfuric acid at 10$0^{\circ}C$ for 2 hours. When the substrate was the mixture of ${\gamma}$-A1$_2$O$_3$and $\alpha$-A1$_2$O$_3$about 92% was dissolved after 4 hours. As a result, more than 99% of platinum could be recovered by this method and aluminum sulfate was obtained as byproduct.

  • PDF