Browse > Article
http://dx.doi.org/10.4150/KPMI.2012.19.6.451

Present Status and Future Prospect of Quantum Dot Technology  

Hong, H.S. (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE))
Park, K.S. (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE))
Lee, C.G. (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE))
Kim, B.S. (Department of Rare Metals, Korea Institute of Industrial Technology (KITECH))
Kang, L.S. (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE))
Jin, Y.H. (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE))
Publication Information
Journal of Powder Materials / v.19, no.6, 2012 , pp. 451-457 More about this Journal
Abstract
Nowadays, research and development on quantum dot have been intensively and comprehensively pursued worldwide in proportion to concurrent breakthrough in the field of nanotechnology. At present, quantum dot technology forms the main interdisciplinary basis of energy, biological and photoelectric devices. More specifically, quantum dot semiconductor is quite noteworthy for its sub-micro size and possibility of photonic frequency modulation capability by controlling its size, which has not been possible with conventionally fabricated bulk or thin film devices. This could lead to realization of novel high performance devices. To further understand related background knowledge of semiconductor quantum dot at somewhat extensive level, a review paper is presently drafted to introduce basics of (semiconductor) quantum dot, its properties, applications, and present and future market trend and prospect.
Keywords
Quantum dot; Quantum dot synthesis; Solar cell; LED; Bio imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Roussignol, D. Ricard and C. Flytzanis: Phys. Rev. Lett., 62 (1989) 312.   DOI   ScienceOn
2 D. J. Norris, A. Sacra, C. B. Murray and M. G. Bawendi: Phys. Rev. Lett., 72 (1994) 2612.   DOI   ScienceOn
3 C. B. Murray, D. J. Norris and M. G. Bawendi: J. Am. Chem. Soc., 115 (1993) 8706.   DOI   ScienceOn
4 P. Reiss, J. Bleuse and A. Pron: Nano Lett., 2 (2002) 781.   DOI   ScienceOn
5 Handbook of Nanostructured Materials and Nanotechnology (Ed: H. S. Nalwa), Academic Press, New York (2000).
6 Nanowires and Nanobelts: Materials, Properties and Devices (Ed: Z. L. Wang), Kluwer Academic Publishers, Boston (2003).
7 Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi and J. H. Fendler: J. Phys. Chem., 100 (1996) 8927.   DOI   ScienceOn
8 Z. A. Peng and X. Peng: J. Am. Chem. Soc., 123 (2001) 183.   DOI   ScienceOn
9 L. Qu, Z. A. Peng and X. Peng: Nano Lett., 1 (2001) 333.   DOI   ScienceOn
10 T. Torimoto, J. P. Reyes, K. Iwasaki, B. Pal, T. Shibayama, K. Sugawara, H. Takahashi and B. Ohtani: J. Am. Chem. Soc., 125 (2003) 316.   DOI   ScienceOn
11 A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian and E. H. Sargent: Nat. Nanotechnol., 7 (2012) 577.   DOI   ScienceOn
12 M. Danek, K. F. Jensen, C. B. Murray and M. G. Bawendi: Chem. Mater. 8 (1996) 173.   DOI   ScienceOn