• Title/Summary/Keyword: Rare earth metals

Search Result 80, Processing Time 0.025 seconds

Magnetism of Amorphous Bulk $(Sm_{1-x}Pr_x)Fe_2$ Alloys in a Low Magnetic Field (저자장에서 비정질 후막$(Sm_{1-x}Pr_x)Fe_2$의 자성)

  • Kim, Jai-Young
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.913-920
    • /
    • 1995
  • RFe$_2$(R=rare earth) Laves Phase intermetallic compounds are one of the promising materials for magnetostrictive applications, due to large magnetostriction coefficients in the order of 10$^{-3}$ . However, because RFe$_2$intermetallic compounds have large magnetostriction constants as well as large magnetocrystalline anisotropy constants, a large external magnetic field is necessary to reach saturation magnetostriction. Hence researches on giant magnetostriction have been concentrated on producing materials exhibiting a high value of magnetostriction in a low magentic field. The main research trend of the giant magnetostriction to obtain the large value in the low magnetic filed, fortunately as the signs of magnetocrystalline anisotropy constans in RFe$_2$intermetallic compounds alternate with the rare earth metals, has been to substitute the rare earth metal for others and hence to reduce the magnetocrystalline anisotropy energy. In addition, amorphous RFe$_2$alloys have been researched. In this research, both of the methods which are substitution of the rare earth metal and amorphization in RFe$_2$ intermetallic compounds are simultaneously conducted to obtain the large magnetostriction coefficient in the low external magnetic field. Among them, SmFe$_2$and PrFe$_2$are selected, and amorphized in substrate-free bulk state. Magnetism in amorphous bulk (Sm$_{1-x}$ Pr$_{x}$) Fe$_2$alloys is investigated in the low magnetic field.ld.

  • PDF

Cytotoxicity and DNA Damage in Human Lung Cells Treated with Lanthanum Oxide and Neodymium Oxide (산화란타늄, 산화네오디뮴이 세포독성 및 DNA손상에 미치는 영향)

  • Kim, Jong Kyu;Kim, Soo Jin;Kang, Min Gu;Chung, Young Hyun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.50-56
    • /
    • 2013
  • Objectives: The present study investigated cytotoxicity and DNA damage in human lung cells in vitro. Methods: Neodymium oxide and lanthanum oxide were dispersed by ultrasonic treatments. The assay was performed with MRC-5 (Human male fetus lung cell). Cytotoxicity and comet assay of lanthanum oxide and neodymium oxide were measured after 24 and 48 hours incubation. Results: After 24 hours of exposure to rare earth metals, the cytotoxicities of lanthanum oxide in more than $1{\mu}M$ concentration groups were significantly increased when compared to the control group, but the cytotoxicities of neodymiun oxide in more than $100{\mu}M$ concentration groups were statistically increased. After 48 hours exposure, cytotoxicities of both materials were statistically increased in $100,000{\mu}M$ concentration groups. Olive tail moments of the lanthanum oxide treated group were significantly increased when compared to the control group. Conclusions: The cytotoxicity of lanthanum oxide was higher than that of neodymium oxide. The DNA of MRC-5 cells treated with lanthanum oxide for 48 hours were significantly damaged.

Macrocyclic Complexes of Actinide and Lanthanide Metals (Ⅰ). Formation and Properties of Cation Complexes with Macrocyclic Ligands (악틴 및 란탄족금속의 거대고리 착물 (제 1 보). 거대고리 리간드의 금속착물의 형성과 성질)

  • Jeong, O Jin;Choe, Chil Nam;Yun, Seok Jin;Son, Yeon Su
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.143-158
    • /
    • 1990
  • Metal complexes were prepared by reacting uranium (Ⅵ), thorium (Ⅳ) and rare earth metal (Ⅲ) ions including Nd (Ⅲ), Sm (Ⅲ) and Ho (Ⅲ) with macrocyclic ligands including five crown ethers, nine crownands and one cryptand ligands, and subjected to NMR studies in order to examine coordination sites of the ligands and compositions of the complexes formed. Among the marcocyclic ligands, crown ethers and crownand ligands have shown down-field shifts of the methylene protons of the lcigands by forming stable complexes with all the metal ions and the differences of chemical shifts were decreased as increasing of the cavity-size of crown ethers for the same metal ions and decreasing of the atomic number of the rare earth metals for the same ligands. It has been found that crownand 22 gave a stable complex with uranium(Ⅵ) ion by the coordination through both oxygen and nitrogen atoms of the ligand whereas no complex was formed with the rare earth metal(Ⅲ) ions, which on the other hand were found to form stable complexes with cryptand 221. The rest of the crowand ligands have also been found to form stable complexes with uranium(Ⅵ) ion by coordinating through all the oxygen and nitrogen atoms of the ligands whereas no complexes were formed with the rare earth metal(Ⅲ) ions. It has also been shown by 1H-NMR study that uranium(Ⅵ), thorium(Ⅳ) and rare earth metal(Ⅲ) ions formed 1:1 complexes with the macrocyclic ligands except for thorium(Ⅳ) complex of 12C4 in which the mole ratio of metal to ligand is 1:2. More stable metal complexes show larger changes in chemical shifts of the coordinated ligand protons. Finally, the rare earth metal(Ⅲ) complexes of 18C6 have shown ligand exchange reaction with the solvent molecules in acetylacetone solution, which was not observed for the uranium (Ⅵ) complexes.

  • PDF

Geochemical Composition of Volcanic Ash from Historical Eruptions of Mt. Baekdu, Korea (역사시대에 분화한 백두산 화산재의 화학 성분)

  • Yun, Sung-Hyo;Koh, Jeon Seon;Chang, Cheolwoo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • Volcanic ash samples of historical eruptions from Mt. Baekdu were analyzed for major oxides, trace and rare earth elements by a variety of analytical techniques. The results indicate that the ashes consist of approximately 58.8~71.1 wt.% $SiO_2$, 9.6~16.8 wt.% $Al_2O_3$, 4.5~6.9 wt.% $Fe_2O_{3t}$, 0.1~1.7 wt.% MgO, 0.3~1.6 wt.% CaO, 5.2~6.3 wt.% $Na_2O$, 4.3~5.9 wt.% $K_2O$ and less than 1.2 wt.% $TiO_2$. Thirty two trace metals including Ba, Cu, Cr. Co, Ni, Sr, V, Zn, and Zr were analyzed. The ashes can be divided two groups: group A(1 ka Millennium pumice, 1668 and $190{\underline{3}}$ pumice) and group B(1702 pumice) according to the relative enrichment of HREEs. The abundances of heavy metals such as Cu, Co, Mn, and Zn were relatively low. As compared to the Sakurajima volcanic ash, Baekdusan volcanic ash has low concentrations of Y, Nb, Pb, U, Sc, V, Ni and Cu and high concentrations of Zr, Ba, Hf, Cr, Co, Zn and rare-earth (except Eu).

Effect of Rare Earth Elements on Uranium Electrodeposition in LiCl-KCl Eutectic Salt (LiCl-KCl 공융염에서 우라늄 전착거동에 대한 희토류 원소들의 영향)

  • Park, Sungbin;Kang, Young-Ho;Hwang, Sung Chan;Lee, Hansoo;Paek, Seungwoo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.263-269
    • /
    • 2015
  • It is necessary to investigate the electrodeposition behavior of uranium and other elements on the cathode in the electrorefining process to recover the uranium selectively from the reduced metals of the electrolytic reduction process since transuranic elements and rare earth elements is dissolved in the LiCl-KCl eutectic salt. Study on separation factors of U, Ce, Y and Nd based on U and Ce was performed to investigate the deposition behavior of the cathode with respect to the concentration of rare earth elements in LiCl-KCl eutectic salt. After electrorefining with constant current mode by using Ce metal as a sacrifice anode, the contents of U, Ce, Y and Nd in the salt phase and the deposit phase of the cathode were analyzed, and separation factors of the elements were obtained from the analyses. Securing conditions of pure uranium recovery in the elctrorefining process was investigated by considering the separation factors with respect to $UCl_3$ and $CeCl_3/UCl_3$ ratio.

Effect of Additives on Catalytic Activity in Thermal Catalytic De-NOx Process (Thermal catalytic de-NOX 공정에서 첨가제가 촉매의 활성에 미치는 영향에 관한 연구)

  • 이진구;김태원;최재순;김정호;이재수;장경욱;박해경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.249-255
    • /
    • 1999
  • We sdudied effect of additives on catalytic activity in thermal catalytic de-NOx process which was composed of thermal reduction, catalytic reduction and catalytic oxidation stage. Pd-Pt/${\gamma}$-$Al_2O_3$ catalysts with the addition of transition metals(Co, Cu, Fe, Ni, W, Zn, Zr) and rare earth metals(Ce, Sr) were prepared by the conventional washcoating method. Those catalysts were characterized by CO pulse chemisorption, ICP, $N_2$ adsorption, SEM and XRD. The effect of catalyst additives on NOx removal for diesel emission was studied in thermal catalytic de-NOx process at reduction temperature(350~50$0^{\circ}C$), space velocity(5,000~20,000 $hr^{-1}$) and the engine load(0~120kW). The concentraton of CO, $CO_2$, NO and $NO_2$ in the exhaust gas increased with the engine load. On the other hand the concentration of $O_2$ decreased. The de-NOx activityof all prepared catalysts increased with respect to high CO and low $O_2$ level in the thermal reduction stage of the process. Insertion of Ce to Pt-Pd/${\gamma}$-$Al_2O_3$ catalyst showed the best activity of all the catalysts under these experimental conditions. De-NOx catalysts are effective to remove CO in addition to NOx in the catalytic reduction stage.

  • PDF

Deformation Behavior of a Wrought Mg-Zn-RE Alloy at the Elevated Temperatures (Mg-Zn-RE 합금 가공재의 온간 기계적 특성)

  • Shin, Beomsoo;Kim, Yule;Bae, Donghyun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • This study has been investigated the deformation behavior of a hot-extruded Mg-Zn-RE (RE: rare earth elements) alloy containing $Mg_{12}$(RE) particles at the elevated temperatures. The particles are intrinsically produced by breaking the eutectic structure of the alloy during the hot-extrusion process. The grain size of the extruded Mg-Zn-RE alloy developed via dynamic recrystallization is around $10{\mu}m$. Under the heat treatment at 200o C up to 48 hr, no change has been observed on the microstructure and mechanical properties due to the pinning effect of the thermally stable particles. Under the tensile test condition in the initial strain-rate range of $1\times10^{-3}s^{-1}$ and the temperature range up to $200^{\circ}C$, the alloy shows yield strength of 270 MPa and elongation to failure around 9% at room temperature and yield strength of 135 MPa at $200^{\circ}C$. Furthermore, although the alloy contains large amount of the second phase particles around 15%, it shows excellent hot-workability possibly due to the presence of the thermally stable interface between the particles and the matrix.

Research on the Manufacturing Technology for a PDMS Structure-Based Transpiration Generator Using Biomimetic Capillary Phenomenon (생체모방 모세관 현상을 이용한 PDMS 구조체 기반 증산발전기 제조기술 연구)

  • Seung-Hwan Lee;Jeungjai Yun;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Yong-Ho Choa;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.268-275
    • /
    • 2023
  • The demand for energy is steadily rising because of rapid population growth and improvements in living standards. Consequently, extensive research is being conducted worldwide to enhance the energy supply. Transpiration power generation technology utilizes the vast availability of water, which encompasses more than 70% of the Earth's surface, offering the unique advantage of minimal temporal and spatial constraints over other forms of power generation. Various principles are involved in water-based energy harvesting. In this study, we focused on explaining the generation of energy through the streaming potential within the generator component. The generator was fabricated using sugar cubes, PDMS, carbon black, CTAB, and DI water. In addition, a straightforward and rapid manufacturing method for the generator was proposed. The PDMS generator developed in this study exhibits high performance with a voltage of 29.6 mV and a current of 8.29 µA and can generate power for over 40h. This study contributes to the future development of generators that can achieve high performance and long-term power generation.

Evaluations of Y2O3 Powder Synthesized Using Oxalic Acid (옥살산을 이용한 Y2O3 분말제조와 특성 평가)

  • Son, Bo-Young;Jung, Mi-Ewon
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.444-449
    • /
    • 2011
  • Nano-sized $Y_2O_3$ powders were prepared via a sol-gel method starting with $Y(NO_3)_3{\cdot}6H_2O$ (Yttrium(III) nitrate hexahydrate) and water with ethanol as a cosolvent. $Y_2O_3$ is an important rare earth oxide and has been considered for use in nuclear applications, such as ceramic materials, due to its excellent optical and refractory characteristics. It has been used as a chemically stable substrate, a crucible material for melting reactive metals, and a nozzle material for jet casting molten rare earth-iron magnetic alloys. Oxalic acid ($C_2H_2O_4$) has been adopted as a chelating agent in order to control the rate of hydrolysis and polycondensation, and ammonia was added in order to adjust the base condition. The synthesized $Y_2O_3$ powder was characterized using TG/DTA, XRD, FE-SEM, BET and Impedance Analyzer analyses. The powder changed its properties in accordance with the pH conditions of the catalyst. As the pH increases according to the FE-SEM, the grain grew and it showed that the pore size decreased while confirming the effect of the grain size. The nano-material $Y_2O_3$ powders demonstrated that the surface area was improved with the addition of oxalic acid with ammonium hydroxide.

Adsorption Characteristic and Elution Behavior of Rare Earth Metals by Cryptand 22 Synthetic Resin (Cryptand 22 합성수지에 의한 희토류 금속들의 흡착특성과 용리행동)

  • 노기환;김준태
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.17-25
    • /
    • 1996
  • Resins with cryptand 22 macrocyclic ligand attached to chloromethylated styrene-1,4-divinylbenzene by substitution reaction were prepared and the effect of pH, metal concentration and cross-linkage of the matrix on the adsorption for $UO_2^{2+}$, $Cd^{2+}$ and $Sm^{3+}$ was investigated. The metal ion was not adsorbed on the resins pH range below 3 but above pH 4 fast adsorption behavior was showed. The resin selectivity determined in ethanol matrix was in increasing order $UO_2^{2+}{\;}>Cd^{2+}{\;}Sm^{3+}$. In addition, these metal ion could be separated on the column packed with 1% crosslinked resin by pH 2.5 $HNO_3$ as an eluent.

  • PDF