• Title/Summary/Keyword: Rare earth element

Search Result 191, Processing Time 0.027 seconds

Stable isotope and rare earth element geochemistry of the Baluti carbonates (Upper Triassic), Northern Iraq

  • Tobia, Faraj Habeeb
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.975-987
    • /
    • 2018
  • Stable isotope ratios of $^{18}O/^{16}O$ and $^{13}C/^{12}C$ and rare earth elements geochemistry of the Upper Triassic carbonates from the Baluti Formation in Kurdistan Region of Northern Iraq were studied in two areas, Sararu and Sarki. The aim of the study is to quantify the possible diagenetic processes that postdated deposition and the paleoenvironment of the Baluti Formation. The replacement products of the skeletal grains by selective dissolution and neomorphism probably by meteoric water preserved the original marine isotopic signatures possibly due to the closed system. The petrographic study revealed the existence of foraminifers, echinoderms, gastropods, crinoids, nodosaria and ostracods as major framework constituents. The carbonates have micritic matrix with microsparite and sparry calcite filling the pores and voids. The range and average values for twelve carbonate rocks of ${\delta}^{18}O$ and ${\delta}^{13}C$ in Sararu section were -5.3‰ to -3.16‰ (-4.12‰) and -2.94‰ to -0.96‰ (-1.75‰), respectively; while the corresponding values for the Sarki section were -3.69‰ to -0.39‰ (-2.08‰) and -5.34‰ to -2.70‰ (-4.02‰), respectively. The bivariate plot of ${\delta}^{18}O$ and ${\delta}^{13}C$ suggests that most of these carbonates are warm-water skeletons and have meteoric cement. The average ${\Sigma}REE$ content and Eu-anomaly of the carbonates of Sararu sections were 44.26 ppm and 1.03, respectively, corresponding to 22.30 ppm and 0.93 for the Sarki section. The normalized patterns for the carbonate rocks exhibit: (1) non-seawater-like REE patterns, (2) positive Gd anomalies (average = 1.112 for Sararu and 1.114 for Sarki), (3) super chondritic Y/Ho ratio is 31.48 for Sararu and 31.73 for Sarki which are less than the value of seawater. The presence of sparry calcite cement, negative $^{13}C$ and $^{18}O$ isotope values, the positive Eu anomaly in the REE patterns (particularly for Sararu), eliminated Ce anomaly ($Ce/Ce^{\ast}$: 0.916-1.167, average = 0.994 and 0.950-1.010, average = 0.964, respectively), and Er/Nd values propose that these carbonates have undergone meteoric diagenesis. The REE patterns suggest that the terrigenous materials of the Baluti were derived from felsic to intermediate rocks.

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

Rare Earth Element, Sm-Nd and Rb-Sr Age and its Geochemical Implication of Leucogranite in the Deokgu Hot Spring Area, Yeongnam Massif, Korea (영남육괴 북동부 덕구온천지구 우백질 화강암의 희토류원소 분포도, Sm-Nd, Rb-Sr 연대 및 지구화학적 의의)

  • Lee, Seung-Gu;Kim, Tong-Kwon;Lee, Tae-Jong
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • Here we report major element composition, trace and rare earth element abundance, Sm-Nd and Rb-Sr isotopic composition from Deokgu leucogranite. Chondrite-normalized REE pattern and its Eu anomaly are divided into 3 types systematically, and have close relationship with $SiO_2$ contents. Such geochemical characteristic indicates that the leucogranite was derived by feldspar fractionation from a common source magma. Sm-Nd and Rb-Sr whole rock ages are $1,785{\pm}180Ma$ (initial $^{143}Nd/^{144}Nd\;ratio=0.51003{\pm}0.00016,\;2{\sigma}$; ${\varepsilon}_{Nd}(T)=-5.9$) and $1,735{\pm}260Ma$ (initial $^{87}Sr/^{86}Sr\;ratio=0.702{\pm}0.046,\;2{\sigma}$), respectively. Initial ${\varepsilon}_{Nd}$ value indicates that the magma should be derived from the crustal material. This initial ${\varepsilon}_{Nd}$ value also corresponds well with those from the Precambrian granitoids from North-China Craton rather than those of South-China Craton.

Geochemical Enrichment and Migration of Environmental Toxic Elements in Stream Sediments and Soils from the Samkwang Au-Ag Mine Area, Korea (삼광 금-은광산 일대의 하상퇴적물과 토양내 함유된 독성원소의 지구화학적 부화와 이동)

  • Lee, Chan Hee;Lee, Byun Koo;Yoo, Bong-Cheal;Cho, Aeran
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 1998
  • Dispersion, migration and enrichment of environmental toxic elements from the Samkwang Au-Ag mine area were investigated based upon major, minor and rare earth element geochemistry. The Samkwang mine area composed mainly of Precambrian granitic gneiss. The mine had been mined for gold and silver, but closed in 1996. According to the X-ray powder diffraction, mineral composition of stream sediments and soils were partly variable mineralogy, which are composed of quartz, orthoclase, plagioclase, amphibole, muscovite, biotite and chlorite, respectively. Major element variations of the host granitic gneiss, stream sediments and soils of mining and non-mining drainage, indicate that those compositions are decrese $Al_2O_3$, $Fe_2O_3$, MgO, $TiO_2$, $P_2O_5$ and LOI with increasing $SiO_2$ respectively. Average compositional ranges (ppm) of minor and/or environmental toxic elements within those samples are revealed as As=<2-4500, Cd=<1-24, Cu=6-117, Sb=1-29, Pb=17-1377 and Zn=32-938, which are extremely high concentrations of sediments from the mining drainage (As=2006, Cd=l1, Cu=71, Pb=587 and Zn=481 ppm, respectively) than concentrations of the other samples and host granitic gneiss. Major elements (average enrichment index=6.53) in all samples are mostly enriched, excepting $SiO_2$, $Na_2O$ and $K_2O$, normalized by composition of host granitic gneiss. Rare earth element (average enrichment index=2.34) are enriched with the sediments from the mining drainage. Minor and/or environmental toxic elements within all samples on the basis of host rock were strongly enriched of all elements (especially As, Br, Cu, Pb and Zn), excepting Ba, Cr, Rb and Sr. Average enrichment index of trace elements in all samples is 15.55 (sediments of mining drainage=37.33). Potentially toxic elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) of the samples revealed that average enrichment index is 46.10 (sediments of mining drainage=80.20, sediments of nonmining drainage=5.35, sediments of confluent drainage=20.22, subsurface soils of mining drainage=7.97 and subsurface soils of non-mining drainage=4.15). Sediments and soils of highly concentrated toxic elements are contained some pyrite, arsenopyrite, sphalerite, galena and goethite.

  • PDF

Geochemical Characteristics of Soils and Sediments at the Narim Mine Drainage, Korea: Dispersion, Enrichment and Origin of Heavy Metals (나림광산 수계의 토양과 퇴적물에 관한 지구화학적 특성: 중금속 원소의 분산, 부화 및 기원)

  • Lee, Chan Hee;Lee, Hyun Koo;Lee, Jong Chang
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.297-310
    • /
    • 1998
  • Geochemical characteristics of environmental toxic elements at the Narim mine area were investigated on the basis of major, minor, rare earth element geochemistry and mineralogy. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in soils and sediments range from 11.57 to 22.21 and from 1.86 to 3.93, and are partly negative and positive correlation against $SiO_2/Al_2O_3$ (3.41 to 4.78), respectively. These suggested that sediment source of host granitic gneiss could be due to rocks of high grade metamorphism originated by sedimentary rocks. Characteristics of some trace and rare earth elements of V/Ni (0.33 to 1.95), Ni/Co (2.00 to 6.50), Zr/Hf (11.27 to 53.10), La/Ce (0.44 to 0.55), Th/Yb (4.07 to 7.14), La/Th (2.35 to 3.93), $La_N/Yb_N$ (6.58 to 13.67), Co/Th (0.63 to 2.68), La/Sc (3.29 to 5.94) and Sc/Th (0.49 to 1.00) are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. Major elements in all samples are enriched $Al_2O_3$, MgO, $TiO_2$ and LOI, especially $Fe_2O_3$ (mean=7.36 wt.%) in sediments than the composition of host granitic gneiss. The average enrichment indices of major and rare earth elements from the mining drainage are 2.05 and 2.91 of the sediments and are 2.02 and 2.60 of the soils, normalizing by composition of host granitic gneiss, respectively. Average composition (ppm) of minor and/or environmental toxic elements in sediments and soils are Ag=14 and 1, As=199 and 14, Cd=22 and 1, Cu=215 and 42, Pb=1770 and 65, Sb=18 and 3, Zn=3333 and 170, respectively, and extremely high concentrations are found in the subsurface sediments near the ore dump. Environmental toxic elements were strongly enriched in all samples, especially As, Cd, Cu, Pb, Sb and Zn. The level of enrichment was very severe in mining drainage sediments, while it was not so great in the soils. Based on the EPA value, enrichment index of toxic elements is 8.63 of mining drainage sediments and 0.54 of soils on the mining drainage. Mineral composition of soils and sediments near the mining area were partly variable being composed of quartz, mica, feldspar, amphibole, chlorite and clay minerals. From the gravity separated mineralogy, soils and sediments are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various hydroxide minerals.

  • PDF

Simulation of Rare Earth Elements Removal Behavior in TRU Product Using HSC Chemistry Code (HSC Chemistry 코드를 이용한 TRU 생성물 중의 희토류 원소 제거 거동 모사)

  • Paek, Seungwoo;Lee, Chang Hwa;Yoon, Dalsung;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • The feasibility of rare earth (RE) removal process via oxidation reactions with UCl3 was investigated using the HSC Chemistry code to reduce the concentrations of RE in transuranic (TRU) products. The composition and thermodynamic data of TRU and RE elements contained in the reference spent fuel were examined. The reactivity was evaluated by calculating equilibrium data considering oxidation reactions with UCl3. Both RE removal rate and TRU recovery rate were evaluated for the two cases, wherein TRU products with different RE concentrations were used. When TRU products were reacted with UCl3, selective oxidation was driven by the difference in the Gibbs free energy of each element. The calculation results imply that the TRU/RE ratio of the final product can be increased by removing RE elements while maintaining the maximum recovery rate of TRU, which is accomplished by controlling the amount of UCl3 injected. Since the results of this study are based on thermodynamic equilibrium data, there are many limitations to apply to the actual process. However, it is expected to be used as an important data for the process design to supply the TRU product of pyroprocessing to SFR's fuel demanding low RE concentrations.

Design of Counter current Extraction Process for the Separation of [Pr, Nd, Sm]/[La] using Cyanex 572 (Cyanex 572를 사용하여 [Pr, Nd, Sm]/[La]분리에 대한 향류추출공정 설계)

  • Lee, Joo-eun;So, Hong-Il;Jang, In-Hwan;Ahn, Jae-Woo;Kim, Hong-in;Lee, Jin-young
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.50-56
    • /
    • 2018
  • For the purpose of optimizing the counter current extraction process for separation of [Pr, Nd, Sm] group and [La] in mixed solution using Cyanex 572 as an extractant, the theory of Xu Guangxian was derived for calculating the optimized extraction factors. From the basic batch test result, the separation factor was 16.80 at extraction process and 21.48 at scrubbing process, and the loading capacity of 1.0 M Cyanex 572 was 0.12 M of rare earth element. The process parameters such as the stage number at extraction and scrubbing process, the flow rate ratio of feed and solvent solution can be calculated using an equation of optimum extraction ratio proposed by Xu Guangxian. From the result of calculation, 7 extraction stages and 4 scrubbing stages were required for rare earth separation, and the flow rate ratio of feed solution, solvent solution, scrubbing solution was 25 : 5.67 : 12.27.

Chemical Characteristics for Hydrothermal Alteration of Surface Sediments from Submarine Volcanoes of the Tonga Arc (통가열도 해저화산 표층 퇴적물 내 열수변질의 화학적 특성)

  • Um, In Kwon;Chun, Jong-Hwa;Choi, Hunsoo;Choi, Man Sik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.245-262
    • /
    • 2013
  • We analyzed 29 surface sediment samples in five submarine volcanoes (TA12, TA19, TA22, TA25, and TA26) located in the southern part of the Tonga arc for trace elements and rare earth elements to investigate characteristics of the hydrothermal alteration of surface sediments. Based on analytical results of trace element and rare earth element (REE), surface sediments of TA12, TA19, and TA22 submarine volcanoes, which are located in the northern part of the study area, were very little or not influenced by hydrothermal fluids. In contrast, some stations of TA25 and TA26 submarine volcanoes were strongly affected by hydrothermal fluids. However, these two submarine volcanoes showed different features in element concentration in the sediments. Some stations of TA25 submarine volcano showed enrichment of Ni, Cu, Sn, Zn, Pb, Cr, Cd, Sb, W, Ba, Ta, Rb, Sr, and As, however, those of TA26 submarine volcano showed enrichment of Sn, Zn, Pb, Cd, Sb, Ba, Rb, and Sr. Stations which enriched trace elements were observed, enriched REEs were also observed. Average upper continental crust (UCC)-normalized REE patterns of the surface sediments generally showed low light REE (LREE) abundances and increased heavy REE (HREE) abundances. Eu enrichment was identified at several stations of TA25 and TA26 submarine volcanoes. In addition, enrichment of Ce was found at some stations of TA26 submarine volcano and these enrichment patterns were similar with hydrothermal fluid of near stations. Furthermore, TA25 and TA26 submarine volcanoes showed different enrichment characteristics of trace elements and REE. Trace elements were concentrated at TA25 submarine volcano. TA26 submarine volcano, on the other hand, observed highly enrichment of REE especially, Eu and Ce. As a result of the investigation, the characteristics and concentrations of REEs and trace elements in the surface sediments of each submarine volcano can be applied to identify hydrothermal alteration of sediments during exploration for hydrothermal deposits.

Ln-resin and HIBA Method for La-Ce and Sm-Nd Isotope Measurement (La-Ce 및 Sm-Nd 동위원소계 측정을 위한 란탄-레진법과 HIBA(Hydroxy Isobutyric Acid)분리법의 상호비교)

  • Lee, Seung-Gu;Lee, Hyomin;Asahara, Yoshihiro;Lee, Mi-Jeong;Choo, MiKyeong;Lee, SeungRyeol
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.431-439
    • /
    • 2012
  • A column chemistry is the most useful tools for isolating the elements of interest in isotope geochemistry. Here we introduce the chemical experimental procedure for Sm, Nd, La and Ce separation such as Teflon powder or Ln-resin method using HDEHP of KIGAM, KBSI, KOPRI and ${\alpha}$-HIBA(${\alpha}$-Hydroxy Isobutyric acid) method of Nagoya University, Japan. This technical report will provide an useful information in selecting the experiment method for rare earth element isotope system study such as Sm-Nd and La-Ce isotope system.

Geochemical and Structural Geological Approach for clarifying Stratigraphy of Quartzite in the Paju Area: an Application of Rare Earth Element and Nd Isotope in Stratigraphy (파주지역 규암의 층서관계 규명을 위한 지구화학적-구조지질학적 연구: 층서규명을 위한 희토류원소 분포도와 Nd 동위원소의 응용)

  • Koh Hee Jae;Lee Seung-Gu;Lee Byung-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.116-126
    • /
    • 2005
  • The Precambrian quartzite and calc-schist layers experienced multi-1310ing events are distributed along the two kinds of U-shaped 1310 (Fold I and II) with $N10^{\circ}E-directed$ fo1d axis in Wollong-myeon, Gwangtan-myeon, Jori-myeon of Paju city, the northeastern part of Gyeonggido. Occurrence of 10 layers of quartzite and 4 layers of calc-schist is not clear whether quartzite and schist layers were deposited sequentially each other or one to two layers of quartzite and schist were distributed repeatedly by isoclinal folding and thrusting, because of lack of sedimentary structures. In this paper, we tried to clarify the correlative relationship among the quartzite beds which are distributed along the U-shaped folds using geochemical tools such as rare earth element (REE) patterns and Nd isotope ratio. Quartzites have characteristics of LREE-flattened, HREE- slightly depleted patterns. They also show Ce negative anomaly whereas there are no Eu anomalies. As a result, quartzite beds occurred along the bilateral sides of fold axis show very similar REE patterns from outer side to inner side of 1314. The Nd model age of quartzite layers shows a trend that the inner part of fold is younger than the outer part of it. Such geochemical characteristics suggest that bilateral quartzite beds occurred along the fold axis were derived from the cogenetic source materials. The REE patterns and trace element geochemistry of mica schist intercalated within quartzite indicate that the quartzite and mica schist may be derived from different source materials. Our results suggest that REE and Nd isotope geochemistries may be very useful in clarifying the relationship of sedimentary deposits which do not show stratigraphical and structural connections in the field.