DOI QR코드

DOI QR Code

Chemical Characteristics for Hydrothermal Alteration of Surface Sediments from Submarine Volcanoes of the Tonga Arc

통가열도 해저화산 표층 퇴적물 내 열수변질의 화학적 특성

  • Um, In Kwon (Korea Institute of Geoscience and Mineral Resources) ;
  • Chun, Jong-Hwa (Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Hunsoo (Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Man Sik (Division of Earth Environmental Sciences. Graduate School of Analytical Science and Technology, Chungnam National University)
  • 엄인권 (한국지질자원연구원) ;
  • 천종화 (한국지질자원연구원) ;
  • 최헌수 (한국지질자원연구원) ;
  • 최만식 (충남대학교 지구환경과학부, 분석과학기술대학원)
  • Received : 2013.10.07
  • Accepted : 2013.12.24
  • Published : 2013.12.31

Abstract

We analyzed 29 surface sediment samples in five submarine volcanoes (TA12, TA19, TA22, TA25, and TA26) located in the southern part of the Tonga arc for trace elements and rare earth elements to investigate characteristics of the hydrothermal alteration of surface sediments. Based on analytical results of trace element and rare earth element (REE), surface sediments of TA12, TA19, and TA22 submarine volcanoes, which are located in the northern part of the study area, were very little or not influenced by hydrothermal fluids. In contrast, some stations of TA25 and TA26 submarine volcanoes were strongly affected by hydrothermal fluids. However, these two submarine volcanoes showed different features in element concentration in the sediments. Some stations of TA25 submarine volcano showed enrichment of Ni, Cu, Sn, Zn, Pb, Cr, Cd, Sb, W, Ba, Ta, Rb, Sr, and As, however, those of TA26 submarine volcano showed enrichment of Sn, Zn, Pb, Cd, Sb, Ba, Rb, and Sr. Stations which enriched trace elements were observed, enriched REEs were also observed. Average upper continental crust (UCC)-normalized REE patterns of the surface sediments generally showed low light REE (LREE) abundances and increased heavy REE (HREE) abundances. Eu enrichment was identified at several stations of TA25 and TA26 submarine volcanoes. In addition, enrichment of Ce was found at some stations of TA26 submarine volcano and these enrichment patterns were similar with hydrothermal fluid of near stations. Furthermore, TA25 and TA26 submarine volcanoes showed different enrichment characteristics of trace elements and REE. Trace elements were concentrated at TA25 submarine volcano. TA26 submarine volcano, on the other hand, observed highly enrichment of REE especially, Eu and Ce. As a result of the investigation, the characteristics and concentrations of REEs and trace elements in the surface sediments of each submarine volcano can be applied to identify hydrothermal alteration of sediments during exploration for hydrothermal deposits.

통가열도 내 우리나라 해저열수광상 독점 탐사지역에 위치하는 5개 해저화산(TA12, TA19, TA22, TA25, TA26) 주변 표층 퇴적물의 열수변질 여부를 규명하고, 열수변질 특성을 확인하기 위하여 각 해저화산에서 채취된 29개의 표층 퇴적물에 대해 미량 원소와 희토류 원소 분석을 실시하였다. 분석 결과 TA12, TA19, TA22 해저화산에서는 열수에 의한 퇴적물의 변질작용이 없거나 매우 적은 것으로 나타났으며, TA25와 TA26 해저화산의 일부 지역은 현재에도 열수의 영향을 받고 있는 것으로 나타났다. 열수의 영향이 있는 해저화산 사이에도 부화된 미량 원소의 종류에 차이가 있는데, TA25 해저화산의 경우 주로 Ni, Cu, Sn, Zn, Pb, Cr, Cd, Sb, W, Ba, Ta, Rb, Sr, As가, TA26 해저화산에서는 주로 Cu, Sn, Zn, Pb, Cd, Sb, Ba, Rb, Sr이 부화되어 있다. 미량 원소의 부화가 확인된 지역은 희토류 원소의 부화도 관찰된다. 상부지각 희토류 원소 농도로 표준화된 희토류 원소의 분포형태는 가벼운 희토류 원소(LREE)가 매우 낮고 중간 희토류 원소(MREE)에서 무거운 희토류 원소(HREE)로 갈수록 증가하는 형태를 보이며, TA25와 TA26 해저화산의 일부 정점에서 Eu의 부화가 확인된다. 또한 TA26 해저화산의 일부 정점에서 Ce이 부화가 관찰되었는데, 이는 주변지역에서 채취된 열수 내 희토류 원소의 높은 Ce분포형태와 매우 유사하다. 또한 TA25와 TA26 해저화산은 부화된 원소의 특징이 다르게 나타나는데, TA25 해저화산에서는 Cu를 포함한 미량 원소가, TA26 해저화산에서는 Ce와 Eu를 포함한 희토류 원소가 우세하게 부화되어 있는 것으로 나타났다. 조사결과 나타난 각 해저화산 표층 퇴적물 내 부화된 미량 원소 및 희토류 원소의 종류와 농도는 차후 통가열도 지역의 열수광상 탐사시에 지역적인 열수변질의 지시자로써 유용하게 활용될 것으로 판단된다.

Keywords

References

  1. Bender, M., Boecker, W., Gornitz, V., Middel, U., Kay, R., Sun, S., and Biscaye, P. (1971) Geochemistry of three cores from the East Pacific Rise. Earth and Planetary Science Letters, 12, 425-43. https://doi.org/10.1016/0012-821X(71)90028-8
  2. Bertine, K.K. (1974) Origin of Lau Basin Rise sediment. Geochimica et Cosmochimica Acta, 38, 629-640. https://doi.org/10.1016/0016-7037(74)90046-5
  3. Bertine, K.K. and Keene, J.B. (1975) Submarine barite-opal rocks of hydrothermal origin. Science, 188, 150-152. https://doi.org/10.1126/science.188.4184.150
  4. Bryan, S.E., Cook, A., Evans, J.P., Colls, P.W., Wells, M.G., Lawrence, M.G., Jell, J.S., Greig, A., and Leslie, R. (2004) Pumice rafting and faunal dispersion during 20012002 in the Southwest Pacific: record of a dacitic submarine explosive eruption from Tonga. Earth and Planetary Science Letters, 227, 135-154. https://doi.org/10.1016/j.epsl.2004.08.009
  5. Chavagnac, V., German, C.R., Milton, J.A., and Palmer, M.R. (2005) Sources of REE in sediment cores from the Rainbow vent site ($36^{\circ}$14'N, MAR). Chemical Geology, 216, 329-352. https://doi.org/10.1016/j.chemgeo.2004.11.015
  6. Cho, B.C., Choi, H.S., and Koh, S. (2011) Element Dispersion and Wallrock Alteration of TA26 Seamount, Tonga Arc. Economic and Environmental Geology, 44, 359-372 (in Korean with English abstract). https://doi.org/10.9719/EEG.2011.44.5.359
  7. Cho, H.G., Kim, Y.H., Um, I.K., and Choi, H.S. (2012) Hydrothermal Alteration Around the TA 26 Seamounts of the Tofua Volcanic Arc in Lau Basin, Tonga. Journal of Mineral Society of Korea, 25, 233-247 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.4.233
  8. Cronan, D.S., Hodkinson, R.A., Harkness, D.D., Moorby, S.A., and Glasby, G.P., (1986) Accumulation rates of hydrothermal metalliferous sediments in the Lau basin, S.W. Pacific. Geo-Marine Letters, 6, 51-56. https://doi.org/10.1007/BF02311696
  9. Daessle, L.W., Cronan, D.S., Marchig, V., and Wiedicke, M. (2000) Hydrothermal sedimentation adjacent to the propagating Valu Fa Ridge, Lau Basin, SW Pacific. Marine Geology, 162, 479-500. https://doi.org/10.1016/S0025-3227(99)00065-1
  10. Elderfield, H., and Greaves, M.J. (1982). The rare earth elements in seawater. Nature, 296, 214-219. https://doi.org/10.1038/296214a0
  11. Edmond, J., von Damm, K.L., McDuff, R.E., and Measures, C.I. (1982) Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature, 297, 187-191. https://doi.org/10.1038/297187a0
  12. Fouquet, Y., von Stackerlberg, U., Charlou, J.L., Erzinger, J., Herzig, P.M., Muhe, R., and Wiedicke, M. (1993) Metallogenesis in Back-Arc Environments: The Lau Basin Example. Economic Geology, 88, 2154-2181. https://doi.org/10.2113/gsecongeo.88.8.2154
  13. German, C.R., Edmond, J.M., Palmer, M.R., and Edmond, J.M. (1999) Geochemistry of a hydrothermal sediment core from the OBS vent-field, $21^{\circ}$N East Pacific Rise. Chemical Geology, 155, 65-75. https://doi.org/10.1016/S0009-2541(98)00141-7
  14. German, C.R., Klinkhammer, G.P., Edmond, J.M., Mitra, A., and Elderfield, H. (1990) Hydrothrmal scavenging of rare-earth elements in the ocean. Nature, 345, 516-518. https://doi.org/10.1038/345516a0
  15. Guilbert, J.M. and Park, C.F. Jr. (1986) The Geology of Ore Deposits (2nd ed.). W.H. Freeman and Co., 985p.
  16. Hawkins, J.W. and Helu, S. (1986) Polymetallic suphide deposit from "black smoker" chimney: Lau Basin. EOS, 67: 378.
  17. Hekinian, Rr., Muhe, R., Worthington, T.J., and Stoffers, P. (2008) Geology of a submarine volcanic caldera in the Tonga Arc: Dive results. Journal of Volcanology and Geothermal Research, 176, 571-582. https://doi.org/10.1016/j.jvolgeores.2008.05.007
  18. Hodkinson, R.A. and Cronan, D.S. (1991) Geochemistry of recent hydrothermal sediments in relation to tectonic environment in the Lau Basin, southwest Pacific. Marine Geology, 98, 353-366. https://doi.org/10.1016/0025-3227(91)90110-P
  19. Hunkins, K. and Kuo, T. (1965) Surface wave dispersion in the Tonga-Fiji region. Bulletin of the Seismological Society of America, 55, 135-145.
  20. Karig, D.E. (1971) Origin and development of marginal basins in the western Pacific. Journal of Geophysical Research, 76, 2542-2561. https://doi.org/10.1029/JB076i011p02542
  21. Kerrich, R. and Said, N. (2011) Extreme positive Ce anomalies in a 3.0 Ga submarine volcanic sequence, Murchison Province: Oxygenated marine bottom waters. Chemical Geology, 280, 232-241. https://doi.org/10.1016/j.chemgeo.2010.11.012
  22. Kim, C.H. and Park, C.H. (2011). Deep Sea Three Components Magnetometer Survey using ROV. Jigu-Mulli-wa-Mulli-Tamsa, 14, 298-304 (in Korean with English abstract).
  23. Kim, H.S., Jung, M., Kim, C.H., Kim, J., and Lee, K. (2008). The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation. Mulli-Tamsa, 11, 167-176 (in Korean with English abstract).
  24. Klinkhammer, G.P., Elderfield, H., Edmond, J.M., and Mitra, A. (1994) Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochimica et Cosmochimica Acta, 58, 5105-5113. https://doi.org/10.1016/0016-7037(94)90297-6
  25. Klinkhammer, G.P., Elderfield, H., and Hudson, A. (1983) Rare earth elements in seawater near hydrothermal vents. Nature, 305, 185-188. https://doi.org/10.1038/305185a0
  26. Koski, R.A., Jonasson, I.R., Kadko, D.C., Smith, V.K., and Wong, F.L. (1994) Compositions, growth mechanisms, and temporal relations of hydrothermal sulfidesulfatesilica chimneys at the northern Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research, 99, 4813-4832. https://doi.org/10.1029/93JB02871
  27. Krasnov, s.g., Cherkashev, G.A., Stepanova, T.V., Batuyev, B.N., Krotov, A.G., Malin, B.V., Maslov, M. N., Markov, V.F., Poroshina, I.M., Samovarov, M.S., Ashadze, A.M., Lazareva, L.I., and Ermolayev, I.K. (1995) Detailed geological studies of hydrothermal fields in the North Atlantic. In: Parson, L.M., Walker, C.L., and Dixon, D.R. (ED), Hydrothermal Vents and Processes. The Geological Society, London, 56p.
  28. Lee, S. and Lee, S.K. (2010) The Prototype Study of Resistivity and Porosity Measurement for the Samples Collected Near Marine Hydrothermal Deposit. Jigu-Mulli-wa-Mulli-Tamsa, 13, 378-387 (in Korean with English abstract).
  29. Martinez, F., Taylor, B., Baker, E.T., Resing, J.A., and Walker, S.L. (2006) Opposing trends in crustal thickness and spreading rate along the back-arc Eastern Lau Spreading Center: Implications for controls on ridge morphology, faulting, and hydrothermal activity. Earth and Planetary Science Letters, 245, 655-672. https://doi.org/10.1016/j.epsl.2006.03.049
  30. MacRae, N.D., Nesbitt, H.W., and Kronberg, B.I. (1992) Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters, 109, 585-591. https://doi.org/10.1016/0012-821X(92)90116-D
  31. Moorby, S.A., Cronan, D.S.,. and Glasby, G.P. (1984) Geochemistry of hydrothermal Mn-oxide deposits from the S.W. Pacific island arc. Geochimica et Cosmochimica Acta, 48, 433-441. https://doi.org/10.1016/0016-7037(84)90272-2
  32. Murray, R.W., Brink, M.R.B., Brumsack, H.J., Gerlach, D.C., and Russ, G.P. (1991) Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce*: Results from ODP Leg 127. Geochimica et Cosmochimica Acta, 55, 2453-2466. https://doi.org/10.1016/0016-7037(91)90365-C
  33. Paropkari, A.L., Ray, D., Balaram, V., Prakash, L.S., Mirza, I.H., Satyanarayana, M., Rao, T.G., and Kaisary, S. (2010) Formation of hydrothermal deposits at Kings Triple Juction, northern Lau backarc basin, SW Pacific: The geochemical perspectives. Journal of Asian Earth Sciences, 38, 121-130. https://doi.org/10.1016/j.jseaes.2009.12.003
  34. Parsapoor, A., Khalili, M., and Mackizadeh, M.A. (2009) The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran). Journal of Asian Earth Sciences, 34, 123-134. https://doi.org/10.1016/j.jseaes.2008.04.005
  35. Parson, L.M., Pearce, J.A., Murton, B.J., and Hodkinson, R.A. (1990) Role of ridge jumps and ridge propagation in the tectonic evolution of the Lau back-arc Basin, SW Pacific. Geology, 18, 470-473. https://doi.org/10.1130/0091-7613(1990)018<0470:RORJAR>2.3.CO;2
  36. Pattan, J.N., Rao, Ch.M., Higgs, N.C., Colley, S., and Parthiban, G. (1995) Distribution of major, trace and rare-earth elements in surface sediments of the Wharton Basin, Indian Ocean. Chemical Geology, 121, 201215.
  37. Piper, D.Z. (1974) Rare earth elements in the sedimentary cycle: A summary, Chemical Geology, 14, 285-304. https://doi.org/10.1016/0009-2541(74)90066-7
  38. Podowski, E.L., Moor, T.S., Zelnio, K.A>, Luther III, G.W., and Fisher, C.R. (2009) Distribution of diffuse flow megafauna in two sites on the Eastern Lau Spreading Center, Tonga. Deep-Sea Research I, 56, 2041-2056. https://doi.org/10.1016/j.dsr.2009.07.002
  39. Smith, M.P., Henderson, P., and Campbell, L.S. (2000) Fractionation of the REE during hydrothermal processes:Constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochimica et Cosmochimica Acta, 64, 3141-3160. https://doi.org/10.1016/S0016-7037(00)00416-6
  40. Song Y.H., and Choi, M.S. (2009) REE geochemistry of fine-grained sediments from major rivers around the Yellow Sea. Chemical Geology, 266, 328-342. https://doi.org/10.1016/j.chemgeo.2009.06.019
  41. Stoffers, P., Worthinton, T.J., Schwarz-Schampera, U., Hannington, M., Hekinian, R., Schmidt, M., Lundsten, L.J., Evans, L.J., Vaiomounga, R., and Kerby, T. (2006) Submarine volcanoes and high-temper ature hydrothermal venting on the Tonga arc, southwest Pacific. Geology, 34, 453-456. https://doi.org/10.1130/G22227.1
  42. Taylor, S.R., and McLennan, S.M. (1995) The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241-265. https://doi.org/10.1029/95RG00262
  43. Usai, A., and Someya, M. (1997) Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the north-west Pacific. In: Nicholson, K., Hein, J.R., Buhn, B., and Dasgupta, S. (Eds.), Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, Geological Society of London, vol. 119. Special Publication, pp. 177-198.
  44. Vitali, F., Blanc, G., Toulkeridis, T., and Stille, P. (2000) Silicate diagenesis in deep-sea sediments from Tonga forearc (SW Pacific): a strontium and Rare Earth Elements signature. Oceanogaphy Acta, 23, 281-396. https://doi.org/10.1016/S0399-1784(00)00129-8
  45. Zellmer, K.E. and Taylor, B. (2001) A three-plate kinematic model for Lau Basin opening, Geochemistry, Geophysics, Geosystems, Paper number 2000GC000 106.

Cited by

  1. 통가열도 TA 25 해저산의 열수변질 vol.27, pp.4, 2013, https://doi.org/10.9727/jmsk.2014.27.4.169