• 제목/요약/키워드: Rapid learning

검색결과 613건 처리시간 0.036초

플립러닝을 적용한 알고리즘 이론교과목의 효과적인 교수학습방법 설계 (Design of Effective Teaching-Learning Method in Algorithm theory Subject using Flipped Learning)

  • 장성진
    • 한국정보통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.1042-1048
    • /
    • 2017
  • 최근 새로운 산업 환경의 변화에 필요한 맞춤형 기업 인재양성을 위한 효과적인 교수학습방법으로 플립러닝이 주목 받고 있다. 기존 강의식 수업방식의 경우 중도탈락률이 높고 창의적 문제 해결력을 저해하는 등의 다양한 문제점이 있다. IT 공과대학의 경우 선수 교과목의 선행이 필요한 전공 이론과목이 대부분이므로 학생들의 학습 참여도와 학업 성취도를 높일 수 있는 효과적인 교수학습방법의 개발이 필요하다. 본 논문에서는 학생들의 학습 동기를 유발하고 자기 주도적 학습을 통한 학습 효과를 높이기 위해 플립러닝과 실습수업을 병행한 5단계 플립러닝 수업모형을 제안하였다. 또한 컴퓨터공학과의 알고리즘 수업에 적용하여 학습 효과를 분석하고 그 결과를 바탕으로 문제점 및 활용방안을 제시하고자 한다.

반복적 경두부 자기자극이 운동학습과 뇌 운동영역 활성화에 미치는 영향 : 예비연구 (Effect of rTMS on Motor Sequence Learning and Brain Activation : A Preliminary Study)

  • 박지원;김종만;김연희
    • 한국전문물리치료학회지
    • /
    • 제10권3호
    • /
    • pp.17-27
    • /
    • 2003
  • Repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability beyond the duration of the rTMS trains themselves. Depending on rTMS parameters, a lasting inhibition or facilitation of cortical excitability can be induced. Therefore, rTMS of high or low frequency over motor cortex may change certain aspects of motor learning performance and cortical activation. This study investigated the effect of high and low frequency subthreshold rTMS applied to the motor cortex on motor learning of sequential finger movements and brain activation using functional MRI (fMRI). Three healthy right-handed subjects (mean age 23.3) were enrolled. All subjects were trained with sequences of seven-digit rapid sequential finger movements, 30 minutes per day for 5 consecutive days using their left hand. 10 Hz (high frequency) and 1 Hz (low frequency) trains of rTMS with 80% of resting motor threshold and sham stimulation were applied for each subject during the period of motor learning. rTMS was delivered on the scalp over the right primary motor cortex using a figure-eight shaped coil and a Rapid(R) stimulator with two Booster Modules (Magstim Co. Ltd, UK). Functional MRI (fMRI) was performed on a 3T ISOL Forte scanner before and after training in all subjects (35 slices per one brain volume TR/TE = 3000/30 ms, Flip angle $60^{\circ}$, FOV 220 mm, $64{\times}64$ matrix, slice thickness 4 mm). Response time (RT) and target scores (TS) of sequential finger movements were monitored during the training period and fMRl scanning. All subjects showed decreased RT and increased TS which reflecting learning effects over the training session. The subject who received high frequency rTMS showed better performance in TS and RT than those of the subjects with low frequency or sham stimulation of rTMS. In fMRI, the subject who received high frequency rTMS showed increased activation of primary motor cortex, premotor, and medial cerebellar areas after the motor sequence learning after the training, but the subject with low frequency rTMS showed decreased activation in above areas. High frequency subthreshold rTMS on the motor cortex may facilitate the excitability of motor cortex and improve the performance of motor sequence learning in normal subject.

  • PDF

CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구 (A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree)

  • 황순환;한성렬;이후진
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.580-586
    • /
    • 2021
  • 현재 사출성형분야의 Computer Aided Testing(CAT) 방법론으로 CAE(Computer Aided Engineering)를 이용한 수치 해석 기법이 주를 이루고 있다. 그러나 최근 시뮬레이션에 추가로 인공지능 기법을 응용하는 방법론이 연구되고 있다. 우리는 지난 연구에서 다양한 Machine Learning 기법을 활용하여 사출 성형 공정에 따른 변형 결과를 비교하였으며, 최종적으로 MLP(Multi-Layer Perceptron) 예측모델을 생성하였고, HMA(Hybrid Metaheuristic Algorithm)를 이용하여 최적화 결과를 얻어냈다. 그러나 MLP는 예측 성능이 우수한 반면 블랙박스와 같이 결정 과정에 대한 설명이 부족하다. 본 연구에서는 Radiator Tank 부품에 대하여 사출 성형 해석 소프트웨어인 Autodesk Moldflow 2018을 이용하여 수치 해석 기법으로 데이터를 생성하고, Machine Learning 소프트웨어인 RapidMiner Studio version 9.5를 활용하여 여러 Machine Learning Algorithms 모델을 생성하여 평균 제곱근 오차를 비교하였다. Decision-tree는 Root Mean Square Error(RMSE) 값이 다른 Machine Learning 기법에 비해 양호한 예측 성능을 갖추고 있었다. Decision-tree의 크기를 결정하는 Maximal Depth에 따라 분류 기준을 높일 수 있지만 복잡성도 함께 증가시켰다. Decision-tree를 이용하여 구속 조건을 만족하는 중간 값을 선정하여 시뮬레이션을 진행한 결과 기존의 시뮬레이션만 진행한 것보다 7.7%의 개선 효과가 있었다.

고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구 (Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image)

  • 이협건;김영운
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.41-49
    • /
    • 2023
  • CNN(Convolutional Neural Network) 알고리즘은 인공신경망 구현에 활용되는 대표적인 알고리즘으로 기존 FNN(Fully connected multi layered Neural Network)의 문제점인 연산의 급격한 증가와 낮은 객체 인식률을 개선하였다. 그러나 IT 기기들의 급격한 발달로 최근 출시된 스마트폰 및 태블릿의 카메라에 촬영되는 이미지들의 최대 해상도는 108MP로 약 1억 8백만 화소이다. 특히 CNN 알고리즘은 고해상도의 단순 이미지를 학습 및 처리에 많은 비용과 시간이 요구된다. 이에 본 논문에서는 고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘을 제안한다. 제안하는 알고리즘은 고해상도의 이미지들의 학습모델 생성 시간을 감소하기 위해 CNN 알고리즘의 풀링계층의 Max Pooling 알고리즘 연산을 위한 인접 행렬 값을 변경한다. 변경한 행렬 값마다 4MP, 8MP, 12MP의 고해상도 이미지들의 처리할 수 있는 학습 모델들을 구현한다. 성능평가 결과, 제안하는 알고리즘의 학습 모델의 생성 시간은 12MP 기준 약 36.26%의 감소하고, 학습 모델의 객체 분류 정확도와 손실률은 기존 모델 대비 약 1% 이내로 오차 범위 안에 포함되어 크게 문제가 되지 않는다. 향후 본 연구에서 사용된 학습 데이터보다 다양한 이미지 종류 및 실제 사진으로 학습 모델을 구현한 실질적인 검증이 필요하다.

대학 이러닝 콘텐츠 기반 학습환경에서 자기조절학습과 학습동기가 학습자-교수자 상호작용 및 학업성취에 미치는 영향의 구조적 관계분석 (Structural Analyses on the Effects of Self-regulated Learning and Learning Motivation on Learner-instructor Interactions and Academic Performance in College Learning Environments with e-Learning Contents)

  • 강민석;임걸
    • 한국콘텐츠학회논문지
    • /
    • 제13권11호
    • /
    • pp.1014-1023
    • /
    • 2013
  • 정보통신기술의 비약적 발전은 온라인을 통한 교육 콘텐츠의 제공을 가능하게 하였으며, 이로 인해 사이버대학 등 새로운 형태의 대학이 활발히 운영되고 있다. 사이버대학의 교육 콘텐츠는 오프라인 대학의 수업과 다소 상이한 모습을 지니며, 이에 따라 학습효과 제고를 위해서 여러 변인들이 새롭게 고려될 필요가 있다. 본 연구에서는 사이버대학 이러닝 콘텐츠 기반 학습환경에서 학업성취도에 미치는 영향 요인들의 구조관계를 고찰하고자 하였다. 연구 결과 첫째, 자기조절학습과 학습동기는 학습자-교수자 상호작용, 학업성취도에 직접적인 영항을 미치는 것으로 나타났다. 둘째, 자기조절학습과 학습동기의 경우 학습자-교수자 상호작용을 매개하여 학업성취도에 영향을 간접적인 영향을 미치는 것으로 나타났다. 셋째, 학습자-교수자 상호작용의 경우 학업성취도에 직접적인 영향을 미치는 것으로 나타났다. 본 연구결과를 통해 이러닝 콘텐츠 기반 학습환경에서 학업성취도에 미치는 영향 요인의 구조를 종합적으로 이해할 수 있었으며, 이를 토대로 향후 사이버대학 이러닝 콘텐츠 기반 학습과 관련된 시사점을 제시하였다.

유비쿼터스 학습(u-Learning)을 위한 미디에이터 기반의 분산정보 활용방법 (A Practical Method of a Distributed Information Resources Based on a Mediator for the u-Learning Environment)

  • 주길홍
    • 정보교육학회논문지
    • /
    • 제9권1호
    • /
    • pp.79-86
    • /
    • 2005
  • 컴퓨터와 통신 기술이 발전함에 따라 네트워크를 통한 일반 사용자들의 컴퓨터 활용 빈도와 요구하는 데이터의 양이 급격히 증가되었다. 이에 따라 최근의 교육 시스템들은 정보의 활용성을 향상시키기 위하여 이질적인 시스템들을 의미상으로 연결하고 있다. 따라서 최근의 웹 기반 교수-학습은 학습자 스스로 학습 내용, 학습 시간 및 학습 순서를 선택하고 조직하는 유비쿼터스 학습방향으로 나아가고 있다. 즉, 학습자 개개인의 특성(선수 지식, 학습 양식, 흥미, 관심)에 맞는 적응적인 교수-학습 환경을 제공하는 방향으로 변화되고 있다. 본 논문은 유비쿼터스 학습 환경에서 다양한 분산정보의 통합을 위하여 사용자들이 요구하는 학습내용을 각 지역서버의 자치성을 유지하면서 효과적으로 학습하기 위한 미디에이터내의 처리방법에 대해 제안한다. 또한 과거와 최근의 학습내용의 활용형태가 다양하게 변할 수 있으므로 시간에 따른 감쇄율을 활용빈도에 적용하여 최근의 활용빈도의 변화에 민감하게 반응하고 활용형태의 변화에 따라 적응적으로 학습내용을 사용할 수 있는 방법을 제안한다.

  • PDF

개인 적응형 이산 수학 학습을 위한 CAS 기반의 가상 학습 시스템 개발 (Development of a CAS-Based Virtual Learning System for Personalized Discrete Mathematics Learning)

  • 전영국;강윤수;김선홍;정인철
    • 한국학교수학회논문집
    • /
    • 제13권1호
    • /
    • pp.125-141
    • /
    • 2010
  • 본 연구의 목적은 컴퓨터대수시스템(CAS)를 활용하여 개인 적응용 이산수학 학습을 가능케하는 웹기반 가상 학습용 콘텐츠를 개발하는 것이다. 중등과정과 대학과정의 이산수학에서 공통적으로 등장하는 집합, 관계, 행렬, 그래프 등의 내용 요목을 중심으로 콘텐츠를 구성하였다. 이산수학의 특성상 컴퓨터를 사용한 이산구조를 즉각적으로 처리하여 그 결과를 시각적으로 제시하는 가상 학습용 콘텐츠 제작 환경을 제시하였다. 각 단원마다 동영상 기반의 강의 콘텐츠를 제공하였으며 강의 기반의 개념을 구체화할 수 있는 Mathematica 기반의 실습하기 기능을 추가하였다. 특히 행렬 단원 학습에서 학습구조도식을 이용한 콘텐츠 설계와 이에 따른 내용 요소별 베이지언 추론망 기반의 진단학습 모듈을 추가함으로써 구체적인 피드백을 통한 개인 적응형 학습이 가능하도록 설계하였다. 개발된 행렬 학습용 콘텐츠 중심으로 10명의 이공계 대학생이 실제 사용해 본 반응을 형성평가의 일환으로 분석하여 향후 수정 방향을 도출하였다.

  • PDF

Lifelong Machine Learning 기반 스팸 메시지 필터링 방법 (A Method for Spam Message Filtering Based on Lifelong Machine Learning)

  • 안연선;정옥란
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1393-1399
    • /
    • 2019
  • 인터넷의 급속한 성장으로 데이터의 송수신의 편리성과 비용이 들지 않는다는 장점 때문에 매일 수백만 건의 무차별적인 광고성 스팸 문자와 메일이 발송되고 있다. 아직은 스팸 단어나 스팸 번호를 차단하는 방법을 주로 사용하지만, 기계 학습이 떠오름에 따라 스팸을 필터링하는 방법에 대해 다양한 방식으로 활발히 연구되고 있다. 그러나 스팸에서만 등장하는 단어나 패턴은 스팸 필터링 시스템에 의해 걸러지지 않기 위해 지속적으로 변화하고 있기 때문에, 기존 기계 학습 메커니즘으로는 새로운 단어와 패턴을 감지, 적응할 수 없다. 최근 이러한 기존 기계 학습의 한계점을 극복하기 위해 기존의 지식을 활용하여 새로운 지식을 지속적으로 학습하도록 하는 Lifelong Learning(이하 LL)의 개념이 대두되었다. 본 논문에서는 문서 분류에 가장 많이 사용되는 나이브 베이즈와 Lifelong Machine Learning(이하 LLML)의 앙상블 기법을 이용한 스팸 메시지 필터링 방법을 제안한다. 우리는 기존 스팸 필터링 시스템에 가장 많이 사용되는 나이브 베이즈와, LLML 모델 중 ELLA를 적용하여 LL의 성능을 검증한다.

딥러닝 기술을 적용한 그래프 알고리즘 성능 연구 (Research on Performance of Graph Algorithm using Deep Learning Technology)

  • 노기섭
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.471-476
    • /
    • 2024
  • 다양한 스마트 기기 및 컴퓨팅 디바이스의 보급에 따라 빅데이터 생성이 광범위하게 일어나고 있다. 기계학습은 데이터의 패턴을 학습하여 추론을 수행하는 알고리즘이다. 다양한 기계학습 알고리즘 중에서 주목을 받는 알고리즘은 신경망 기반의 딥러닝 학습이다. 딥러닝은 다양한 응용이 발표되면서 빠른 성능 향상을 달성하고 있다. 최근 딥러닝 알고리즘 중에서 그래프 구조를 활용하여 데이터를 분석하려는 시도가 증가하고 있다. 본 연구에서는 그래프 구조를 활용하여 딥러닝 네트워크에 전달하기 위한 그래프 생성 방법을 제시한다. 본 논문은 그래프 생성 과정에서 노드의 속성과 간선의 가중치를 일반화하고 행렬화 과정을 제시하여 딥러닝 입력에 필요한 구조로 전환하는 방법을 제시한다. 그래프 생성 과정에서 속성과 가중치 정보를 보전할 수 있는 선형변환 매트릭스 적용 방법을 제시한다. 마지막으로 일반 그래프의 딥러닝 입력 구조를 제시하고 성능 분석을 위한 접근법을 제시한다.

신경회로망 학습이득 알고리즘을 이용한 자율적응 시스템 구현 (Implementation of Self-Adaptative System using Algorithm of Neural Network Learning Gain)

  • 이성수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1868-1870
    • /
    • 2006
  • Neural network is used in many fields of control systems, but input-output patterns of a control system are not easy to be obtained and by using as single feedback neural network controller. And also it is difficult to get a satisfied performance when the changes of rapid load and disturbance are applied. To resolve those problems, this paper proposes a new algorithm which is the neural network controller. The new algorithm uses the neural network instead of activation function to control object at the output node. Therefore, control object is composed of neural network controller unifying activation function, and it supplies the error back propagation path to calculate the error at the output node. As a result, the input-output pattern problem of the controller which is resigned by the simple structure of neural network is solved, and real-time learning can be possible in general back propagation algorithm. Application of the new algorithm of neural network controller gives excellent performance for initial and tracking response and it shows the robust performance for rapid load change and disturbance. The proposed control algorithm is implemented on a high speed DSP, TMS320C32, for the speed of 3-phase induction motor. Enhanced performance is shown in the test of the speed control.

  • PDF