• 제목/요약/키워드: Rapid heating

검색결과 391건 처리시간 0.026초

히트 파이프를 이용한 열경화성 나노임프린트 장비용 열판의 온도 균일도 향상 (Improvement of Temperature Uniformity in a Hot Plate for Thermal Nanoimprint Lithography by Installing Heat Pipes)

  • 박규진;양진오;이재종;곽호상
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.74-80
    • /
    • 2016
  • This study presents a thermal device specially designed for thermal nanoimprint lithography equipments, which requires the capability of rapid heating and cooling, high temperature uniformity and the material strength to endure high stamping pressure. The proposal to meet these requirements is a planar-type hot plate extensible to a large area, in which long circular cartridge heaters and heat pipes are installed inside in parallel. The heat pipes are connected to the outside water cooling chamber. A hot plate made of stainless steel is fabricated with a dimension $240mm{\times}240mm{\times}20mm$. Laboratory experiments are conducted to examine the thermal performance of the hot plate. The results illustrate that the employment of heat pipes leads to a notable enhancement of temperature uniformity in the device and provides an efficient heat delivery from the hot plate to outside. It is verified that the suggested hot plate could be a feasible thermal tool for thermal nanoimprint lithography, satisfying the major design requirements.

급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리 (High functional surface treatments for rapid heating of plastic injection mold)

  • 박현준;조균택;문경일;김태범;김상섭
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.7-12
    • /
    • 2021
  • Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.

급속가열냉각장치에 의한 금속성 안료 사출성형 (A Study on Plastic Injection Molding of a Metallic Resin Pigment using a Rapid Heating and Cooling System)

  • 이규상;진동현;곽재섭
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.87-92
    • /
    • 2015
  • The injection molding process is widely used in the production of most plastic products. In order to make metal-colored plastic products like those found in modern luxury home alliances, metallic pigments are mixed with a basic resin material for injection molding. However, process control for metal-colored plastic products is extremely difficult due to the non-uniform melt flow of the metallic resin pigments. In this study, the effect of process parameters on the quality of a metal-colored plastic product is evaluated. A rapid mold cooling method using a compressed cryogenic fluid is also proposed to decrease the content of undesired compounds within the plastic product.

급속 가열에 의한 박육 사출성형의 유동특성 개선 (Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Beating)

  • 김병훈;박근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.9-12
    • /
    • 2005
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filing difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation fur both the conventional molding and the RTR molding processes

  • PDF

Introduction of the Rapid Analysis Method for PCBs in Insulating Oils and Its Comparison Study to the Analysis Method in Korea

  • Hong, Jang-Ho;Takahashi, Tomohumi;Ishizaka, Takahiro;Toita, Hideki;Min, Byung-Yoon;Honda, Katsuhisa
    • Environmental Engineering Research
    • /
    • 제16권1호
    • /
    • pp.11-18
    • /
    • 2011
  • The aim of this research was to introduce a new rapid analysis method (heating of the multi-layer silica gel column/alumina column) for polychlorinated biphenyls in insulating oils, and to compare our new method with the analytical method currently used in Korea. The entire pretreatment procedure was completed within 2 hr, using about only 20 mL of solvents via our rapid analytical method. Furthermore, the pretreatment procedure can always be uniformly performed, regardless of oil type (JIS 1~JIS 7 and KS 1~KS 7). The recovery rates were more than 89%, with relative standard deviations below 6.0%. In conclusion, this rapid analytical method could reduce the pretreatment time and solvent usage by 1/10 and between 1/25 and 1/50, respectively, compared to analytical method currently used in Korea.

Swift Synthesis of CVD-graphene Utilizing Conduction Heat Transfer

  • Kim, Sang-Min;Mag-isa, Alexander E.;Oh, Chung-Seog;Kim, Kwang-Seop;Kim, Jae-Hyun;Lee, Hak-Joo;Yoon, Jonghyuk;Lee, Eun-Kyu;Lee, Seung-Mo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.652-652
    • /
    • 2013
  • The conventional thermal chemical vapor deposition (CVD) setup for the graphene synthesis has mainly used convective heat transfer in order to heat a catalyst (e.g. Cu) up to $1,000^{\circ}C$. Although the conventional CVD has been so far widely accepted as the most appropriate candidate enabling mass-production of high-quality graphene, this method has stillremained under the standard for the commercialization largely due to the poor productivity arisen out of the required long processing time. Here, we introduced a fast and efficient synthetic route toward CVD-graphene. Unlike the conventional CVD using convection heat transfer, we adopted a CVD setup utilizing conduction heat transfer between Cu catalyst and rapid heating source. The high thermal conductive nature of Cu and the employed rapid heating source led to the remarkable reduction in processing timeas compared to the conventional convection based CVD (Fig. 1A), moreover, the synthesized graphene was turned out to have comparable quality to that synthesized by the conventional CVD (Fig. 1B). For the optimization of the conduction based CVD process, the parametric studies were thoroughly performed using through Raman spectroscopy and electrical sheet resistance measurement. Our approach is thought to be worth considerable in order to enhance productivity of the CVD graphene in the industry.

  • PDF

급속 열처리시 실리콘 웨이퍼의 온도분포와 슬립 현상의 해석 (Analysis of Temperature Distribution and slip in Rapid Thermal Processing)

  • 이혁;유영돈;엄윤용;신현동;김충기
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.609-620
    • /
    • 1992
  • 본 연구에서는 텅스텐 할로겐 램프를 이용한 급속 열처리 장치로 웨이퍼를 가 열할 때 시간에 따라 변하는 웨이퍼의 2차원 온도 분포와 온도 구배에 의해 발생하는 열응력을 실리콘 웨이퍼의 결정방향에 따라 다른 값을 갖는 탄성계수를 고려하여 계산 하고, 슬립의 발생 시기, 웨이퍼의 가열속도와 슬립량의 관계, 그리고 웨이퍼에 발생 한 슬립의 진전 특성에 대하여 살펴보고 실험결과와 비교하였다.

915 MHz Microwave를 이용한 동결 돈육의 급속 해동 (Rapid Thawing of Frozen Pork by 915 MHz Microwave)

  • 이종경;박지용
    • 한국식품과학회지
    • /
    • 제31권1호
    • /
    • pp.54-61
    • /
    • 1999
  • 본 연구는 해동 중 발생하는 drip 손실, 미생물의 오염, 표면의 과열 등을 방지하면서 급속 해동 방법을 찾기 위해 동결 돈육에 여러 가지 해동 방법을 적용하였다. 4, 28, $50^{\circ}C$에서의 해동과 2,450, 915 MHz의 microwave를 이용하여 해동을 실시하였고, 915 MHz microwave 해동은 출력을 5, 10, 15 kW로 변화시키면서 단일 조사와 $120^{\circ}C$의 열풍을 함께 조사한 경우를 해동시간, 온도분포, drip 손실, 보수력, 표면색도, 총세균수를 측정하였다. 915 MHz microwave를 이용한 해동은 열전도에 의한 해동보다 2백배 이상 시간이 단축되었고, 2,450 MHz microwave를 이용한 해동 방법의 침투깊이의 제한에서 발생되는 문제를 개선시킬 수 있었으며 drip 손실, 보수력, 총세균수에 있어서 효과가 컸다. 저주파수(915 MHz), 저출력(5 kW)의 microwave와 대류 가열을 병용하여 품질 저하를 최소한으로 방지하면서 급속해동을 위한 산업적 이용이 가능한 것으로 기대할 수 있었다.

  • PDF

200 W급 휴대용 연료전지 시스템의 빠른 기동 특성을 위한 수성 가스 반응기 설계 (Design of Water Gas Shift Reactor for Rapid Start-Up in 200 W Portable Fuel Cell System)

  • 최종록;이성철
    • Korean Chemical Engineering Research
    • /
    • 제51권4호
    • /
    • pp.455-459
    • /
    • 2013
  • 휴대용 연료전지 시스템에 사용되는 연료 개질 시스템은 수소 발생기, 산화기, 일산화탄소 제거기로 구성되어 있다. 휴대용 연료전지 시스템 설계에서 시스템의 기동 시간은 매우 중요한 설계 인자이다. 특히, WGS 반응기의 기동 시간은 리포메이트의 질을 결정하기 때문에 전체 시스템의 기동 시간에 중요한 부분을 차지한다. 본 논문에서는 과량의 일산화탄소가 포함되어 있는 리포메이트 가스를 WGS 반응기에서 산화시킴으로써 WGS 반응기를 가열하는 방법을 사용하였다. 이때 공급되는 공기는 WGS 반응기 입구에 공급되어 기동 초기에 발생되는 과량의 일산화탄소가 함유된 리포메이트 가스를 제거하므로써, 운전 중에 일산화탄소의 과잉 공급없이 안정적으로 리포메이트를 공급함으로써 기동 시간을 단축할 수 있었다.

2단계 RTD방법에 의한 $N^+P$ 접합 티타늄 실리사이드 특성연구 (The characterization for the Ti-silicide of $N^+P$ junction by 2 step RTD)

  • 최도영;윤석범;오환술
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권6호
    • /
    • pp.737-743
    • /
    • 1995
  • Two step RTD(Rapid Thermal Diffussion) of P into silicon wafer using tungsten halogen lamp was used to fabricated very shallow n$^{+}$p junction. 1st RTD was performed in the temperature range of 800.deg. C for 60 see and the heating rate was in the 50.deg. C/sec. Phosphrous solid source was transfered on the silicon surface. 2nd RTD process was performed in the temperature range 1050.deg. C, 10sec. Using 2 step RTD we can obtain a shallow junction 0.13.mu.m in depth. After RTD, the Ti-silicide process was performed by the two step RTA(Rapid Thermal Annealing) to reduced the electric resistance and to improve the n$^{+}$p junction diode. The titanium thickness was 300.angs.. The condition of lst RTA process was 600.deg. C of 30sec and that of 2nd RTA process was varied in the range 700.deg. C, 750.deg. C, 800.deg. C for 10sec-60sec. After 2 step RTA, sheet resistance was 46.ohm../[]. Ti-silicide n+p junction diode was fabricated and I-V characteristics were measured.red.

  • PDF