• Title/Summary/Keyword: Rao-Cramer bound

Search Result 57, Processing Time 0.03 seconds

Determination of Optimal Sensor Locations for Modal System Identification-based Damage Detection on Structures (주파수영역 손상식별 SI 기법에 적응할 최적센서 위치결정법)

  • 권순정;신수봉;박영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.95-102
    • /
    • 2003
  • To define an analytical model for a structural system or to assess damage in the system, system identification(SI) methods have been developed and widely applied. The paper presents a method of determining optimal sensor location(OSL) based on the maximum likelihood approach, which is applicable to modal SI methods. To estimate unknown parameters reliably, it is necessary that the information provided by the experiment should be maximized. By applying the Cramer-Rao inequality, a Fisher information matrix in terms of the probability density function of measurements is obtained from a lower bound of the estimation error. The paper also proposes a scheme of determining of OSL on damaged structures by using maximum strain energy factor. Simulation studies have carried out to investigate the proposed OSL algorithm for both undamaged and damaged structures.

  • PDF

Chapman-Robbins-type and Bayesian lower bounds based on diffusivity for median-unbiased estimators

  • Kyung, Sung-Nae
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.445-452
    • /
    • 1997
  • A more generalized version of the information inequality based on diffusivity which is a natural measure of dispersion for median-unbiased estimators developed by Sung et al. (1990) is presented. This non-Bayesian L$_{1}$ information inequality is free from regularity conditions and can be regarded as an analogue of the Chapman-Robbins inequality for mean-unbiased estimation. The approach given here, however, deals with a more generalized situation than that of the Chapman-Robbins inequality. We also develop a Bayesian version of the L$_{1}$ information inequality in median-unbiased estimation. This latter inequality is directly comparable to the Bayesian Cramer-Rao bound due to the van Trees inequality.

  • PDF

Influence of Model Errors in Model-based Camera Tracking (모델기반 카메라 추적에서의 모델오차의 영향)

  • Rhee, Eun Joo;Kim, Kangsoo;Seo, Byung-Kuk;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.234-237
    • /
    • 2011
  • 본 논문에서는 모델 기반 카메라 추적 시 필요한, 사전 정의 된 실측 모델의 정확성이 카메라 추적의 정확성에 미치는 영향에 대하여 논의한다. 이를 위하여 모델 기반과 특징점 기반의 카메라 추적에 가중치를 두고 혼합시켜 이용하는 하이브리드 카메라 추적 방법을 사용하고, 이 방법을 활용한 상호작용형 모델링(interactive modeling)을 이용하여 실측 모델을 제작한다. 또한, 상호작용형 모델링 과정에서 생기는 실측 모델의 오차로 인해 발생하는 카메라 추적 오차를 Cramer-Rao 하한(lower bound)을 이용하여 정의하고, 이 둘의 상관관계를 실험적으로 도출한다. 이를 통해 사전 정의된 실측 모델이 가질 수 있는 오차의 하한을 실험적으로 검증한다.

  • PDF

A New FeedForward(FF) Timing Estimation Technique for High-Speed Transmission of Bursts (고속의 버스트 전송을 위한 새로운 피드포워드 타이밍 추정 기법)

  • 최윤석;조지훈;김응배;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.12A
    • /
    • pp.1774-1780
    • /
    • 2000
  • 본 논문에서는 TDMA 방식의 고속의 버스트 데이터 전송에서 프리앰블의 오버샘플링 데이터 값을 이용한 새로운 피드포워드 타이밍 추정 기법을 제안한다. 제안된 추정 기법은 검출 오류 분산 값 (DEV : Detection Error Variance) 측면에서 기존의 여러 타이밍 추정기법과 MCRB (Modified Cramer-Rao Bound)와 비교되어 진다. 또한, 제안된 타이밍 추정 기법을 고정 샘플링 클럭과 타이밍 보정기로서 보간 필터를 이용한 심볼 동기 블록을 적용하여 이상적인 경우의 BER과 그 성능을 비교한 결과 이상적인 경우에 비해 성능 저하가 BER이 $10^{-3}$인 지점에서 최대 0.2dB 이내임을 확인하였다.

  • PDF

Estimation and Validation of Longitudinal Stability/Control Derivatives for the Flight Training Device of a Light Aircraft

  • Lee, Jung Hoon
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • The longitudinal flight parameters of a light airplane are estimated from flight test data by use of the output error method. The reliability of the flight test measurement is examined in engineering judgment, scatter and Cramer-Rao bound, which turns out to be satisfactory with minor defects. Estimated parameter values are validated by comparing the simulated responses with the ones from actual flight tests. The FTD(Flight Training Device) of a light airplane turns out to satisfy the qualification of FAA Level 5 FTD in longitudinal motion. All the necessary practices for generation of high-fidelity data in longitudinal motion of a light aircraft are successfully performed in this study.

Maximum Likelihood and Signal-Selective TDOA Estimation for Noncircular Signals

  • Wen, Fei;Wan, Qun
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.245-251
    • /
    • 2013
  • This paper addresses the issue of time-difference-of-arrival (TDOA) estimation for complex noncircular signals. First, under the wide-sense stationary assumption, we derive the maximum likelihood (ML) estimator and the Cramer-Rao lower bound for Gaussian noncircular signals in Gaussian circular noise. The ML estimator uses the second-order statistics information of a noncircular signal more comprehensively when compared with the cross-correlation (CC) and the conjugate CC estimators. Further, we present a scheme to modify the traditional signal-selective TDOA methods for noncircular signals on the basis of the cyclostationarity of man-made signals. This scheme simultaneously exploits the information contained in both the cyclic cross-correlation (CCC) and the conjugate CCC of a noncircular signal.

A Calibration Technique and its Error Analysis for the Position of Seabed Sonar Target (해저고정 소나표적의 위치교정기법과 오차해석)

  • 이상국;이용곤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.15-21
    • /
    • 2003
  • This paper contains a precise calibration technique for the position of seabed acoustic target and theoretical error analysis of calibration results. The target is deployed on seabed as a standalone transponder. The purpose of target is performing accuracy test for active sonar as well as position calibration itself. For the position calibration, relative range between target and test vessel should be measured using target's transponder function. The relative range data combined with vessel position can be converted into a estimated position of target by the application of nonlinear LSE method. The error analysis of position calibration was divided into two stages. One is for relative range estimator and the other for target position estimator. Numerical simulations for position calibration showed good matching between results and developed CRLB.

SNR Enhancement Algorithm Using Multiple Chirp Symbols with Clock Drift for Accurate Ranging

  • Jang, Seong-Hyun;Kim, Yeong-Sam;Yoon, Sang-Hun;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.841-848
    • /
    • 2011
  • A signal-to-noise ratio (SNR) enhancement algorithm using multiple chirp symbols with clock drift is proposed for accurate ranging. Improvement of the ranging performance can be achieved by using the multiple chirp symbols according to Cramer-Rao lower bound; however, distortion caused by clock drift is inevitable practically. The distortion induced by the clock drift is approximated as a linear phase term, caused by carrier frequency offset, sampling time offset, and symbol time offset. SNR of the averaged chirp symbol obtained from the proposed algorithm based on the phase derotation and the symbol averaging is enhanced. Hence, the ranging performance is improved. The mathematical analysis of the SNR enhancement agrees with the simulations.

Off-grid direction-of-arrival estimation for wideband noncircular sources

  • Xiaoyu Zhang;Haihong Tao;Ziye, Fang;Jian Xie
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.492-504
    • /
    • 2023
  • Researchers have recently shown an increased interest in estimating the direction-of-arrival (DOA) of wideband noncircular sources, but existing studies have been restricted to subspace-based methods. An off-grid sparse recovery-based algorithm is proposed in this paper to improve the accuracy of existing algorithms in low signal-to-noise ratio situations. The covariance and pseudo covariance matrices can be jointly represented subject to block sparsity constraints by taking advantage of the joint sparsity between signal components and bias. Furthermore, the estimation problem is transformed into a single measurement vector problem utilizing the focused operation, resulting in a significant reduction in computational complexity. The proposed algorithm's error threshold and the Cramer-Rao bound for wideband noncircular DOA estimation are deduced in detail. The proposed algorithm's effectiveness and feasibility are demonstrated by simulation results.

Development of the Simulation Tool to Predict a Coverage of the R-Mode System (지상파 통합항법 서비스의 성능예측 시뮬레이션 툴 개발)

  • Son, Pyo-Woong;Han, Younghoon;Lee, Sangheon;Park, Sanghyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.429-436
    • /
    • 2019
  • The eLoran system is considered the best alternative because the vulnerability of satellite navigation systems cannot be resolved as perfect. Thus, South Korea is in the process of establishing a testbed of the eLoran system in the West Sea. To provide resilient navigation services to all waters, additional eLoran transmitters are required. However, it is difficult to establish eLoran transmitters because of various practical reasons. Instead, the positioning with NDGNSS/AIS source can expand the coverage and its algorithm with applying continuous waves is under development. Using the already operating NDGNSS reference station and the AIS base station, it is possible to operate the navigation system with higher accuracy than before. Thus, it is crucial to predict the performance when each system is integrated. In this paper, we have developed a simulation tool that can predict the performance of terrestrial integrated navigation system using the eLoran system, maritime NDGNSS station and the AIS station. The esitmated phase error of the received signal is calculated with the Cramer-Rao Lower Bound factoring the transmission power and the atmospheric noise according to the transmission frequency distributed by the ITU. Additionally, the simulation results are more accurate by estimating the annual mean atmospheric noise of the 300 kHz signal through the DGPS signal information collected from the maritime NDGNSS station. This approach can further increase the reliability of simulation results.