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Abstract

A more generalized version of the information inequality based on
diffusivity which is a natural measure of dispersion for median-unbiased
estimators developed by Sung et al. (1990) is presented. This non-
Bayesian L, information inequality is free from regularity conditions
and can be regarded as an analogue of the Chapman-Robbins inequal-
ity for mean-unbiased estimation. The approach given here, however,
deals with a more generalized situation than that of the Chapman-
Robbins inequality. We also develop a Bayesian version of the L,
information inequality in median-unbiased estimation. This latter in-
equality is directly comparable to the Bayesian Cramér-Rao bound due
to the van Trees inequality.
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1. INTRODUCTION

There exist many criteria under which we determine a good estimator
for a certain parametric function of interest. Whatever criterion we use, we
need a measure of closeness of the estimator to the parametric function in
order to assess the efficiency, or performance of the estimator. The usual
practice of searching for a minimum-variance estimator within the class of
mean-unbiased estimators is an example.

Because of the arbitrariness of selecting a resticted class of estimators,
Lehmann (1951) considered a more general approach of finding an optimal
estimator in the class of risk-unbiased estimators which include the usual
class of L,-unbiased estimators. Hence an optimal estimator in the class of
L,-unbiased estimators minimizes the Minkowsky metric.

The common practical choices of p would be either 2 or 1. For p = 2 the
risk is restricted to the squared error loss and it is minimized under mean-
unbiased estimators. For p = 1 the risk is restricted to the absolute error loss
and it is minimized under median-unbiased or L;-unbiased estimators.

Let X denote a random vector and 7(@) be a parametric function of in-
terest.

Definition. §(X) is called median-unbiased for 7(0) if

median,6(X) = 7(9) forall € ©

Let §(X ) be a median-unbiased estimator having a continuous density gs.
Then, as was shown by Sung et al. (1990), under certain regularity conditions,
the following information inequality holds:

1 5 170)|
29+(7(8);8) — L(6)’
where I is the first absolute moment of the sample score:

(1.1)

L(8) =E,

dlog f(z;6)
EY) '

The left-hand side term in (1.1) is called diffusivity, which is the recipro-
cal of twice the median-unbiased estimator’s density height evaluated at its
median point.

Refer to Sung (1993) and Sung (1990) for a general discussion of diffusivity
and its multivariate form, respectively.
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In this paper we generalize the L; information inequality (1.1) and present
an analogue of the Chapman-Robbins (1951) inequality which is free from
regularity conditions.

In addition, we derive a Bayesian L; information inequality which can
be regarded as an L; version of the van Trees inequality. The van Trees
inequality provides a Bayesian Cramér-Rao bound.

In this case, we define that §(X ) is median-unbiased for 7(8) if the median
of §(X ) with respect to the posterior distribution coincides to 7(6). For more
notations for Bayesian inferences, see Section 3.

Note that, in developing a Bayesian L, information inequalities, we will
follow the notations used in Gill and Levit (1995).

2. GENERALIZED CHAPMAN-ROBBINS-TYPE
INEQUALITY BASED ON DIFFUSIVITY

In this section we derive a generalized Chapman-Robbins-type information
inequality based on diffusivity.

Theorem 2.1. Let X be a random variable with density f(z;6) on a
o-finite measure space (X,F,p) with 6 € © C R open. Let f(x;6) be
absolutely continuous in 8 for p almost all z with Radon-Nikodym derivative
f(z;6) and let I;(8) = [|f(z;6)|du(z) be continuous in . Let r : © - R
be differentiable with derivative 7. If §(X) is a median-unbiased estimator
of 7(#) with distribution function G4(y;8), y € R, under 6, then

limsup 2{G,(r(0) + 0) = Gu(+(6);0)) < l—’-% (2.1)
with equality iff
7(6){6(z) — 7(0)} f(z;0)} >0  for p almost all z. (2.2)

Proof. The left hand side of the inequality (2.1) equals

limsup{r(8 +n) — 7(6)} ' {2G+(7(6 + n); 6) — 1}

y—0

- nmsup{r'w)}-‘% {Go(r(6 +7);8) = [1 = Gy(+(6 + ) 0)]}

n—0
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n—0

= lim sup{7'(0)}“1% {/b(.,->gf(f;+.,,)[f($;9) — f(z;6 + n)ju(dx)

+/f‘(«l')>r(a+,,)[f(x;9 +n) - f($§9)]u(dx)}
= limSUP{T’(Q)}_l / {1(r(()+u).00)(6(1')) — 1(_OO.T({)+”))(5($))}

n—0

1 ro+u -
- | Fae)denan)

<timsup{l7' @)} 3 [ [ 1) lutao)de
_ Ii(9)
QO

Hence the inequality (2.1) is proved and one can verify that the equality
(2.2) holds if and only if (2.2) is satisfied in view of the relations (14) and
(15) given in Sung et al. (1990).

Theorem 2.2. If G; has a density g at 7(6), then (2.1) reduces to as
1 _10)
29(7(0);0) — L(9)

We remark that for the strongly unimodal densities of the form f(z;6)

exp h(z —0) for h strictly concave, one can verify that the MLE satisfies (2.2),
as was shown in Sung et al. (1990).

(2.3)

3. BAYESIAN INFORMATION BOUND

In this section we will derive a Bayesian information inequality for a dis-
persion measure called Bayesian diffusivity. However, before doing so, we
review the van Trees inequality and introduce some notaions for Bayesian
information inequalities.

Let (X, F,P, : 0 € O) be a family of distributions on some sample space
X, dominated by a measure y. Let the parameter space © is a closed interval
on the real line. Let f(z|0) denote the density of P, with respect to u. Let
7 be some probability distribution on © with a density A(€) with respect to
Lebesgue measure.

We suppose that both X and f(z|-) are absolutely continuous for p almost
surely. Assume further that A converges to zero at the endpoints of the



L, Information Bounds 449

interval ©. From now on a prime will denote a partial derivative with respect
to 4.

Let § = §(X) denote any estimator of 6, where X ~ P,. We write E, for
expectation with respect to #. When 0 is drawn from the distribution =, and
conditional on § = 6, X from P,, we write E for expectation with respect to
the ensuing joint distribution of X and 4.

Define further

,(0) = B [alog;(gxw)]
and
T,(\) = By [m"—g;w—)] ,

where 7,(0) is the usual Fisher information for  and Z,()\) is the Fisher
information for A, respectively.

Then, as van Trees (1968) showed, under the condition that ,/Z,(6) is
locally integrable in 8, we have the following van Trees inequality:

1

2
o= E[L(9)] + I.(2)

The van Trees inequality provides a Bayesian Cramér-Rao bound for L,
estimation.

Further studies concerning to the van Trees information inequality have
been given in Brown and Gajek (1990), Bobrovsky et al. (1987) and Klaassen
(1989).

Gill and Levit (1995) generalized the van Trees inequality and derived
the following information inequality for estimating an absolutely continuous
function 7 of ¢:

E[§(X) (3.1)

' 2

E{(S(X) _ T(Q)]2 2 [E{T (0)}] )

E[L(0)] + I ())

We now develop an analogue of the van Trees information inequality for

median-unbiased estimators, where the measure of dispersion is the Bayesian

diffusivity. The resulting inequality will be called the Bayesian L; information
inequality.

(3.2)

Theorem 3.1. Let X be a random variable with density f(z|f) on a o-finite
measure space (X, F,u) with § € © C R open. Let m be some probability
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distribution on © with a density A(6) with respect to Lebesgue measure. Let
f(z|-) be absolutely continuous in 6 for u almost surely with Radon-Nikodym
derivative f(z|8). Let A be also absolutely continuous for x almost surely.
Define further

dlo X0
0 = 5 |80
and
dlog \(8)
i\ = Ey |—————=1.
1) = By | =75

Let 7 : © — R be differentiable with derivative 7'. Let Y = 6§(X) be a
median-unbiased estimator of 7(#) with distribution function G;(y|9), y € R,
under . We suppose further that 7’ and G’ are either both nondecreasing or
both nonincreasing. Then

hmsup {Gy((0) + €l6) — G+(7(0)|0)}(d6)

e—0

<A{E[L(O)} + Ti(M)} Ey l (3.3)

_LI
7(©)|

Proof. By taking ¢ = 7(6+n)— 7(#) and applying the covariance inequality,
the left hand side of the inequality (3.3) becomes

lim sup [T((H'") 7(9)] [G (T(o+n)fo)_l]7r(da)
3n—0 n
< By |—|timsup [ 2[G,(+(6 + m)I6) — {1 - Ga(7(0 + n)10)} ] (d0)
7@ ot ) 7
]- . 1 * *
Ey| g |imswe [ [ (7 (@.0) = £ (@0 + ma(da)
t [ (@04~ £ (5, 0)}n(dz)do
8(r)>7(0+7)
= B, 2 timsup [ [ {10100 = 1o roe (@)

x = / f*(x, €)dep(dz)do
n Jo
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< Ey T’EQ) lir:ljélp/l/(’+” |£* (e, )ln(dz)do

g T’:Q) // 8logf(a:|0) Blog)\(())‘f 216 (dz)(d6)
<elosl [ | {}"’bgf 1)) 4 | 2B olopuaayoan
- B T,EQ) (E[L(0)] + T.(\)}.

In the course of proof, f* denotes the joint density of X and 4.

In Theorem 3.1, we call the reciprocal of the left hand side of (3.3) the
Bayesian diffusivity, which is the expected diffusivity with respect. to 6.
From Theorem 3.1, we have the following immediate consequences:

Theorem 3.2. If G, has a density g at 7(0), then (3.3) can be expressed as
1 YIBT@N]
Ey2g(r(8)I10) ~ E[Li(9)] + Ti(A)

Furthermore, if 6 is a median-unbiased estimator of 7(6) = 4, then we have

(3.4)

1 1
> .
Ey29((0)16) ~ E[L(O)]+ (M)
In view of Theorem 3.2, the Bayesian diffusivity has the form of 1/E,[2g

(r(2) 19)].
Note that (3.5) is a direct analogue of the van Trees inequality and (3.4)
is an analogue of Gill-Levit-type inequality.

Example. Let X |0 ~ N(8,1) and § ~ N(0,1). Then the posterior distribu-
tion of @ is also normal such that

1 11
ol ~ N (Le+ 1 1Y)
Bl (2‘””2’2)

(3.5)

Take § = §(X) = X/2 + 1/2. Then E)|T,(8)] = Ti(\) = V2/7 and
E,[2|7'(8]6)|] = 2/+/7. Hence 6 in this case does not achieve the bound.
It appears that finding an estimator which achieves the Bayesian bound

is not easy. One may observe the same phenomenon as in Bayesian mean-
unbiased estimation. For instance, see Gill and Levit (1995).
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Finally we remark that exact computation of the Bayesian bound, whether
it be for mean-unbiased or median-unbiased estimation, is very difficult except
for a few trivial cases. In this regard it seems to be necessary to provide an
efficient computer algorithm for proper numerical integration technique in
order to obtain Bayesian bounds.

REFERENCES

( 1) Bobrovsky, B. Z., Mayer-Wolf, E. and Zakai, M. (1987). Some classes of
global Cramér-Rao bounds. Annals of Statistics, 15, 1421-1438.

( 2) Brown, L. D. and Gajek, L. (1990). Information inequalities for the
Bayes risk. Annals of Statistics, 18, 1578-1594.

( 3) Chapman, D. G. and Robbins, H. (1951). Minimum variance estimation
without regularity assumptions. Annals of Mathematical Statistics, 22,
581-586.

(4) Gill, R. D. and Levit, B. Y. (1995). Applications of the van Trees in-
equality: a Bayesian Cramér-Rao bound. Bernoulli, 1, 59-79.

( 5) Klaassen, C. A. J. (1989). The asymptotic spread of estimators. Journal
of Statistical Planning and Inference, 23, 267-285.

( 6) Lehmann, E. L. (1951). A general concept of unbiasedness. Annals of
Mathematical Statistics, 22, 587-592.

(7) Sung, N. K. (1990). A generalized Cramér-Rao analogue for median-
unbiased estimators. Journal of Multivariate Analysis, 32, 204-212.

( 8) Sung, N. K. (1993). Improving L; information bound in the presence of a
nuisance parameter for median-unbiased estimators. Journal of Korean
Statistical Society, 22, 1-12.

( 9) Sung, N. K., Stangenhaus, G., and David, H. T. (1990). A Cramér-Rao
analogue for median-unbiased estimators. Trabajos de Estadistica, 5,
83-94.

(10) van Trees, H. L. (1968). Detection, estimation and modulation theory.
Part 1. Wiley, New York.



