Journal of the Korean Data and Information Science Society
/
제21권4호
/
pp.803-811
/
2010
This study analyzes the characteristics of preference ratings by dividing estimated values into four groups according to rank correlation coefficient after obtaining preference estimated value to user's ratings by using collaborative filtering algorithm. It is known that the value of standard error of skewness and standard error of kurtosis lower in the group of higher rank correlation coefficient This explains that the preference of higher rank correlation coefficient has lower extreme values and the differences of preference rating values. In addition, top n recommendation lists are made after obtaining rank fitting by using the result ranks of prediction value and the ranks of real rated values, and this top n is applied to the four groups. The value of top n recommendation is calculated higher in the group of higher rank correlation coefficient, and the recommendation accuracy in the group of higher rank correlation coefficient is higher than that in the group of lower rank correlation coefficient Thus, when using standard error of skewness and standard error of kurtosis in recommender system, rank correlation coefficient can be higher, and so the accuracy of recommendation prediction can be increased.
본 논문에서는 rank-order 방법을 이용한 임펄스(impulse) 잡음 제거 알고리즘을 제안한다. 제안된 방법은 빠르고 간단하게 잡음을 제거할 수 있는 알고리즘으로 크게 두 부분으로 나눌 수 있다. 첫 번째는 퍼지(fuzzy) 기술을 이용한 임펄스 잡음 검출 과정이다. 입력된 영상을 RGB 채널로 분리한 후, 각 채널의 모든 화소가 잡음인지 아닌지를 판단하여 잡음일 확률을 계산하고 할당한다. 이때 잡음 검출 마스크에서 rank-order를 사용하여 기존의 방법에 비해 보다 정확하게 잡음을 검출할 수 있다. 두 번째는 임펄스 잡음 제거 과정으로, 각 화소에 할당된 잡음 확률에 따라 화소를 변환하여 잡음이 제거된 출력 영상을 획득하는 과정이다. 실험을 통해 기존의 방법과 제안한 방법을 비교 분석하였으며, 제안한 방법이 보다 정확하게 잡음인 화소를 검출할 수 있음을 확인하였다. 또한 출력 영상에서도 보다 높은 PSNR 수치를 나타내었다.
이 연구는 국내 인용 데이터베이스에서 저널 페이지랭크를 올바르게 측정할 수 있는 방안을 모색하고자 하였다. 국내 인용 데이터베이스는 해외 인용 데이터베이스에 비해서 인용 링크가 외부로 향하는 비율과 자기 인용 비율이 높다는 특성이 있다. 페이지랭크 공식은 반복 계산을 통해서 수렴하는 알고리즘이기 때문에 이런 특성을 감안하지 않으면 신뢰할만한 저널 페이지랭크 측정이 이루어질 수 없다. 따라서 국내 인용 데이터베이스에 적합한 저널 페이지랭크 측정 방안을 살펴보고 KSCD를 대상으로 측정한 결과를 분석하였다. 산출된 페이지랭크 지수에 대해서 상관분석과 회귀분석으로 검증해본 결과 SCImago 저널 랭크 공식을 적용하고 cr2 방식으로 저널 자기 인용을 조정하는 것이 국내 인용 색인 데이터베이스에서 저널 영향력을 평가하기에 적합한 방안인 것으로 확인되었다.
TextRank 알고리즘을 활용한 연관 단어 추천 시스템과 사용자가 선택한 단어 기반 아이디어 생성 서비스를 반응형 웹으로 제공한다. 연관 단어 추천 시스템에서는 TextRank 알고리즘을 이용한 단어별 가중치 부여 방법 및 SoftMax를 적용한 확률 출력 방법을 논한다. 아이디어 생성 서비스에서는 mini-GPT를 이용한 아이디어 생성 방법과 인공지능 강화학습 방법에 대해 논한다. 반응형 웹에 대해서는 React와 Spring Boot, Flask 간의 연동 과정에 대해 논하며 전체적인 구동 방식에 대해 서술한다. 사용자가 원하는 주제를 입력하면 연관된 단어를 제공한다. 사용자는 연관된 단어를 선택하거나 원하는 단어를 추가하여 마인드맵을 구성한다. 사용자가 구성된 마인드맵에서 조합할 단어를 선택하면 새로 생성된 아이디어와 그와 연관된 특허를 제공한다. 본 웹서비스는 생성된 아이디어에 대해 다른 사용자와 공유할 수 있으며, 별점으로 사용자 피드백을 받아 인공지능을 개선한다.
질문(Question)과 답변(Answer)을 하는 커뮤니티 기반의 지식검색서비스에서는 질의를 통해 원하는 답변을 얻을 수 있지만, 수많은 사용자들이 참여함에 따라 방대한 문서 속에서 신뢰성있는 문서를 찾아내는 것은 점점 더 어려워지고 있다. 지식검색서비스에서 기존 연구는 사용자들이 생성한 데이터 즉 추천수, 조회수 등의 비텍스트 정보를 이용하거나 답변의 길이, 자료첨부, 연결어 등의 텍스트 정보 이용하여 문서의 품질을 평가하고, 이를 검색에 반영하여 검색성능을 향상시키는 데 활용했다. 그러나 비텍스트 정보는 질의/응답의 초기에 사용자들에 의해 충분한 정보를 확보할 수 없는 단점이 있으며, 텍스트 정보는 전체의 문서를 답변의 길이, 연결어등과 같은 일부요인으로 판단해야하기 때문에 품질평가의 한계가 있다고 볼 수 있다. 본 논문에서는 이러한 비텍스트 정보와 텍스트 정보의 문제점을 개선하기 위한 QualityRank 알고리즘을 제안한다. QualityRank는 텍스트/비텍스트 정보와 소셜 네트워크 분석 기반의 사용자 중앙성을 고려하여 질문에 적합하고 신뢰성 있는 답변을 랭킹화 한다 실험결과 제안한 알고리즘을 사용했을 경우 텍스트/비텍스트 모델 보다 랭킹성능에 있어 향상된 결과를 얻을 수 있었다.
개미 알고리즘은 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법으로, 그리디 탐색뿐만 아니라 긍정적 피드백을 사용한 모집단에 근거한 접근법으로 순회 판매원 문제를 풀기 위해 처음으로 제안되었다. 본 논문은 개선된 $AS_{rank}$ 알고리즘을 제안한다. 기존 $AS_{rank}$ 알고리즘은 최적 경로로 구성될 가능성이 높은 경로에 대해서만 페로몬 갱신을 수행하고 최적 경로를 구성할 가능성이 낮은 경로에 대해서는 전혀 고려하지 않는다. 이것을 고려해 본 논문에서는 최적 경로로 구성될 가능성이 낮은 경로(에이전트들이 구성한 경로 중 최악 경로)에 대해 페로몬을 증발시켜 다음 탐색 과정에서 해당 경로 탐색을 줄이고자 하였다. 이를 통해 다음 사이클에서 에이전트들이 해당 간선의 선택 확률을 줄여줌으로써 기존 ACS 알고리즘에 비해 평균 탐색 시간과 평균 반복 횟수를 줄일 수 있음을 보여준다.
This paper deals with the design of a low order $H_{\infty}$ controller by using an iterative linear matrix inequality (LMI) method. The low order $H_{\infty}$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the effectiveness of the proposed algorithm.
This paper presents an iterative linear matrix inequality (LMI) approach to the design of a static output feedback (SOF) stabilization controller. A linear penalty function is incorporated into the objective function for the non-convex rank constraint so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. Hence, the overall procedure results in solving a series of semidefinite programs (SDPs). With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Extensive numerical experiments are Deformed to illustrate the proposed algorithm.
This paper deals with the design of a fixed-structure $H_\infty$ power system stabilizer (PSS) by using an iterative linear matrix inequality (LMI) method. The fixed-structure $H_\infty$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the practical applicability of the proposed algorithm.
웹 검색에는 기존의 정보검색(Information Retrieval) 시스템에서와 다르게 문서 간 하이퍼링크 정보를 바탕으로 각 웹 문서의 고유 중요도를 추정하는 방식이 자주 이용된다. 링크 분석에 기반한 알고리즘 중 PageRank 알고리즘은 구글의 웹 검색 서비스에 적용된 것으로 알려져 있다. 이런 PageRank 알고리즘에 따라 중요도를 계산하는 경우 색인된 웹 문서수가 증가함에 따라 계산에 필요한 CPU 자원의 사용도 함께 증가하며, 문서 수가 수 억 페이지에 달하면 하나의 서버에서는 계산을 수행할 수 없다는 문제가 있다. 본 논문에서는 이런 문제점을 해소하기 위해 여러 대의 서버를 PageRank 계산 용 클러스터로 사용할 수 있는 방법을 제시한다. 제시된 방법은 고속의 LAN을 이용하여 여러 대의 서버를 연결하고 반복적인 행렬 계산을 병렬로 수행할 수 있어 계산 시간을 단축시킬 수 있다. 이런 서버 클러스터 구현을 위해 멀티 쓰레딩 프로그램이 작성되었으며, PageRank 계산에 사용되는 행렬 데이터를 적은 양의 메모리만으로 표현 가능하도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.