• Title/Summary/Keyword: Rank algorithm

Search Result 283, Processing Time 0.031 seconds

Text Categorization Using TextRank Algorithm (TextRank 알고리즘을 이용한 문서 범주화)

  • Bae, Won-Sik;Cha, Jeong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.110-114
    • /
    • 2010
  • We describe a new method for text categorization using TextRank algorithm. Text categorization is a problem that over one pre-defined categories are assigned to a text document. TextRank algorithm is a graph-based ranking algorithm. If we consider that each word is a vertex, and co-occurrence of two adjacent words is a edge, we can get a graph from a document. After that, we find important words using TextRank algorithm from the graph and make feature which are pairs of words which are each important word and a word adjacent to the important word. We use classifiers: SVM, Na$\ddot{i}$ve Bayesian classifier, Maximum Entropy Model, and k-NN classifier. We use non-cross-posted version of 20 Newsgroups data set. In consequence, we had an improved performance in whole classifiers, and the result tells that is a possibility of TextRank algorithm in text categorization.

Automatic Meeting Summary System using Enhanced TextRank Algorithm (향상된 TextRank 알고리즘을 이용한 자동 회의록 생성 시스템)

  • Bae, Young-Jun;Jang, Ho-Taek;Hong, Tae-Won;Lee, Hae-Yeoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.467-474
    • /
    • 2018
  • To organize and document the contents of meetings and discussions is very important in various tasks. However, in the past, people had to manually organize the contents themselves. In this paper, we describe the development of a system that generates the meeting minutes automatically using the TextRank algorithm. The proposed system records all the utterances of the speaker in real time and calculates the similarity based on the appearance frequency of the sentences. Then, to create the meeting minutes, it extracts important words or phrases through a non-supervised learning algorithm for finding the relation between the sentences in the document data. Especially, we improved the performance by introducing the keyword weighting technique for the TextRank algorithm which reconfigured the PageRank algorithm to fit words and sentences.

Document Summarization Considering Entailment Relation between Sentences (문장 수반 관계를 고려한 문서 요약)

  • Kwon, Youngdae;Kim, Noo-ri;Lee, Jee-Hyong
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.179-185
    • /
    • 2017
  • Document summarization aims to generate a summary that is consistent and contains the highly related sentences in a document. In this study, we implemented for document summarization that extracts highly related sentences from a whole document by considering both similarities and entailment relations between sentences. Accordingly, we proposed a new algorithm, TextRank-NLI, which combines a Recurrent Neural Network based Natural Language Inference model and a Graph-based ranking algorithm used in single document extraction-based summarization task. In order to evaluate the performance of the new algorithm, we conducted experiments using the same datasets as used in TextRank algorithm. The results indicated that TextRank-NLI showed 2.3% improvement in performance, as compared to TextRank.

Implementation Techniques to Apply the PageRank Algorithm (페이지랭크 알고리즘 적용을 위한 구현 기술)

  • Kim, Sung-Jin;Lee, Sang-Ho;Bang, Ji-Hwan
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.745-754
    • /
    • 2002
  • The Google search site (http://www.google.com), which was introduced in 1998, implemented the PageRank algorithm for the first time. PageRank is a ranking method based on the link structure of the Web pages. Even though PageRank has been implemented and being used in various commercial search engines, implementation details did not get documented well, primarily due to business reasons. Implementation techniques introduced in [4,8] are not sufficient to produce PageRank values of Web pages. This paper explains the techniques[4,8], and suggests major data structure and four implementation techniques in order to apply the PageRank algorithm. The paper helps understand the methods of applying PageRank algorithm by means of showing a real system that produces PageRank values of Web pages.

FolkRank++: An Optimization of FolkRank Tag Recommendation Algorithm Integrating User and Item Information

  • Zhao, Jianli;Zhang, Qinzhi;Sun, Qiuxia;Huo, Huan;Xiao, Yu;Gong, Maoguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • The graph-based tag recommendation algorithm FolkRank can effectively utilize the relationships between three entities, namely users, items and tags, and achieve better tag recommendation performance. However, FolkRank does not consider the internal relationships of user-user, item-item and tag-tag. This leads to the failure of FolkRank to effectively map the tagging behavior which contains user neighbors and item neighbors to a tripartite graph. For item-item relationships, we can dig out items that are very similar to the target item, even though the target item may not have a strong connection to these similar items in the user-item-tag graph of FolkRank. Hence this paper proposes an improved FolkRank algorithm named FolkRank++, which fully considers the user-user and item-item internal relationships in tag recommendation by adding the correlation information between users or items. Based on the traditional FolkRank algorithm, an initial weight is also given to target user and target item's neighbors to supply the user-user and item-item relationships. The above work is mainly completed from two aspects: (1) Finding items similar to target item according to the attribute information, and obtaining similar users of the target user according to the history behavior of the user tagging items. (2) Calculating the weighted degree of items and users to evaluate their importance, then assigning initial weights to similar items and users. Experimental results show that this method has better recommendation performance.

Music Lyrics Summarization Method using TextRank Algorithm (TextRank 알고리즘을 이용한 음악 가사 요약 기법)

  • Son, Jiyoung;Shin, Yongtae
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2018
  • This research paper describes how to summarize music lyrics using the TextRank algorithm. This method can summarize music lyrics as important lyrics. Therefore, we recommend music more effectively than analyzing the number of words and recommending music.

Keywords Refinement using TextRank Algorithm (TextRank를 이용한 키워드 정련 -TextRank를 이용한 집단 지성에서 생성된 콘텐츠의 키워드 정련-)

  • Lee, Hyun-Woo;Han, Yo-Sub;Kim, Lae-Hyun;Cha, Jeong-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.285-289
    • /
    • 2009
  • Tag is important to retrieve and classify contents. However, someone uses so many unrelated tags with contents for the high ranking In this work, we propose tag refinement algorithm using TextRank. We calculate the importance of keywords occurred a title, description, tag, and comments. We refine tags removing unrelated keywords from user generated tags. From the results of experiments, we can see that proposed method is useful for refining tags.

  • PDF

An Unplugged Activity to Understand the PageRank Algorithm (PageRank 알고리즘을 이해하기 위한 언플러그드 활동)

  • Park, Youngki
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.4
    • /
    • pp.409-417
    • /
    • 2018
  • There are unplugged computer science activities for elementary school students to learn the concept of the Internet. However, these activities are not enough to teach the concept of the Web because they focus on teaching how the Internet works. Since the Web is the core technology of the Third Industrial Revolution, it needs to be understood as a basic common sense. In this paper, we developed an unplugged activity to understand the PageRank algorithm which is closely related to the web. The experimental results show that our unplugged activities behave similarly to the PageRank algorithm.

Identification of Key Nodes in Microblog Networks

  • Lu, Jing;Wan, Wanggen
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • A microblog is a service typically offered by online social networks, such as Twitter and Facebook. From the perspective of information dissemination, we define the concept behind a spreading matrix. A new WeiboRank algorithm for identification of key nodes in microblog networks is proposed, taking into account parameters such as a user's direct appeal, a user's influence region, and a user's global influence power. To investigate how measures for ranking influential users in a network correlate, we compare the relative influence ranks of the top 20 microblog users of a university network. The proposed algorithm is compared with other algorithms - PageRank, Betweeness Centrality, Closeness Centrality, Out-degree - using a new tweets propagation model - the Ignorants-Spreaders-Rejecters model. Comparison results show that key nodes obtained from the WeiboRank algorithm have a wider transmission range and better influence.

Ranking Quality Evaluation of PageRank Variations (PageRank 변형 알고리즘들 간의 순위 품질 평가)

  • Pham, Minh-Duc;Heo, Jun-Seok;Lee, Jeong-Hoon;Whang, Kyu-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.5
    • /
    • pp.14-28
    • /
    • 2009
  • The PageRank algorithm is an important component for ranking Web pages in Google and other search engines. While many improvements for the original PageRank algorithm have been proposed, it is unclear which variations (and their combinations) provide the "best" ranked results. In this paper, we evaluate the ranking quality of the well-known variations of the original PageRank algorithm and their combinations. In order to do this, we first classify the variations into link-based approaches, which exploit the link structure of the Web, and knowledge-based approaches, which exploit the semantics of the Web. We then propose algorithms that combine the ranking algorithms in these two approaches and implement both the variations and their combinations. For our evaluation, we perform extensive experiments using a real data set of one million Web pages. Through the experiments, we find the algorithms that provide the best ranked results from either the variations or their combinations.