• Title/Summary/Keyword: Rank Algorithm

Search Result 282, Processing Time 0.025 seconds

Polynomial matrix decomposition in the digital domain and its application to MIMO LBR realizations (디지탈 영역에서의 다항식 행렬의 분해와 MIMO LBR 구현에의 응용)

  • 맹승주;임일택;이병기
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.115-123
    • /
    • 1997
  • In this paper we present a polynomial matrix decomposition algorithm that determines a polynomial matix M(z) which satisfies the relation V(z)=M(z) for a given polynomial matrix V(z) which is paraconjugate hermitian matrix with normal rank r and is positive semidenfinite on the unit circle of z-plane. All the decomposition procedures in this proposed method are performed in the digitral domain. We also discuss how to apply the polynomial matirx decomposition in realizing MIMO LBR two-pairs.

  • PDF

On the Fitting ANOVA Models to Unbalanced Data

  • Jong-Tae Park;Jae-Heon Lee;Byung-Chun Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.48-54
    • /
    • 1995
  • A direct method for fitting analysis-of-variance models to unbalanced data is presented. This method exploits sparsity and rank deficiency of the matrix and is based on Gram-Schmidt orthogonalization of a set of sparse columns of the model matrix. The computational algorithm of the sum of squares for testing estmable hyphotheses is given.

  • PDF

Real-time simulation on B-spline deformable volume-part III (B-spline volume 변형체의 실시간 시뮬레이션 II)

  • 전성기;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.70-77
    • /
    • 2002
  • Since our physical world cannot be modeled as rigid body, deformable object models are important. For real-time simulation of elastic object, it must be guaranteed by its exact solution and low-latency computational cost. In this paper, we describe the boundary integral equation formulation of linear elastic body and related boundary element method(BEM). The deformation of elastic body can be effectively solved with 1ow run-time computational costs, using precomputed Green Function and fast low-rank updates based on Capacitance Matrix Algorithm.

  • PDF

Indoor 3D Dynamic Reconstruction Fingerprint Matching Algorithm in 5G Ultra-Dense Network

  • Zhang, Yuexia;Jin, Jiacheng;Liu, Chong;Jia, Pengfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.343-364
    • /
    • 2021
  • In the 5G era, the communication networks tend to be ultra-densified, which will improve the accuracy of indoor positioning and further improve the quality of positioning service. In this study, we propose an indoor three-dimensional (3D) dynamic reconstruction fingerprint matching algorithm (DSR-FP) in a 5G ultra-dense network. The first step of the algorithm is to construct a local fingerprint matrix having low-rank characteristics using partial fingerprint data, and then reconstruct the local matrix as a complete fingerprint library using the FPCA reconstruction algorithm. In the second step of the algorithm, a dynamic base station matching strategy is used to screen out the best quality service base stations and multiple sub-optimal service base stations. Then, the fingerprints of the other base station numbers are eliminated from the fingerprint database to simplify the fingerprint database. Finally, the 3D estimated coordinates of the point to be located are obtained through the K-nearest neighbor matching algorithm. The analysis of the simulation results demonstrates that the average relative error between the reconstructed fingerprint database by the DSR-FP algorithm and the original fingerprint database is 1.21%, indicating that the accuracy of the reconstruction fingerprint database is high, and the influence of the location error can be ignored. The positioning error of the DSR-FP algorithm is less than 0.31 m. Furthermore, at the same signal-to-noise ratio, the positioning error of the DSR-FP algorithm is lesser than that of the traditional fingerprint matching algorithm, while its positioning accuracy is higher.

Sparse and low-rank feature selection for multi-label learning

  • Lim, Hyunki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we propose a feature selection technique for multi-label classification. Many existing feature selection techniques have selected features by calculating the relation between features and labels such as a mutual information scale. However, since the mutual information measure requires a joint probability, it is difficult to calculate the joint probability from an actual premise feature set. Therefore, it has the disadvantage that only a few features can be calculated and only local optimization is possible. Away from this regional optimization problem, we propose a feature selection technique that constructs a low-rank space in the entire given feature space and selects features with sparsity. To this end, we designed a regression-based objective function using Nuclear norm, and proposed an algorithm of gradient descent method to solve the optimization problem of this objective function. Based on the results of multi-label classification experiments on four data and three multi-label classification performance, the proposed methodology showed better performance than the existing feature selection technique. In addition, it was showed by experimental results that the performance change is insensitive even to the parameter value change of the proposed objective function.

Estimation of bridge displacement responses using FBG sensors and theoretical mode shapes

  • Shin, Soobong;Lee, Sun-Ung;Kim, Yuhee;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.229-245
    • /
    • 2012
  • Bridge vibration displacements have been directly measured by LVDTs (Linear Variable Differential Transformers) or laser equipment and have also been indirectly estimated by an algorithm of integrating measured acceleration. However, LVDT measurement cannot be applied for a bridge crossing over a river or channel and the laser technique cannot be applied when the weather condition is poor. Also, double integration of accelerations may cause serious numerical deviation if the initial condition or a regression process is not carefully controlled. This paper presents an algorithm of estimating bridge vibration displacements using vibration strains measured by FBG (Fiber Bragg Grating) sensors and theoretical mode shapes of a simply supported beam. Since theoretically defined mode shapes are applied, even high modes can be used regardless of the quality of the measured data. In the proposed algorithm, the number of theoretical modes is limited by the number of sensors used for a field test to prevent a mathematical rank deficiency from occurring in computing vibration displacements.89The proposed algorithm has been applied to various types of bridges and its efficacy has been verified. The closeness of the estimated vibration displacements to measured ones has been evaluated by computing the correlation coefficient and by comparing FRFs (Frequency Response Functions) and the maximum displacements.

Design of Advanced HITS Algorithm by Suitability for Importance-Evaluation of Web-Documents (웹 문서 중요도 평가를 위한 적합도 향상 HITS 알고리즘 설계)

  • 김분희;한상용;김영찬
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.2
    • /
    • pp.23-31
    • /
    • 2003
  • Link-based search engines generate the rank using linked information of related web-documents . HITS(Hypertext Internet Topic Search), representative ranking evaluation algorithm using a special feature of web-documents based on such link, evaluates the importance degree of related pages from linked information and presents by ranking information. Problem of such HITS algorithm only is considered the link frequency within documents and depends on the set of web documents as input value. In this paper, we design the search agent based on better HITS algorithm according to advanced suitability between query and search-result in the set of given documents from link-based web search engine. It then complements locality of advanced search performance and result.

  • PDF

A Fast and Efficient Sliding Window based URV Decomposition Algorithm for Template Tracking (템플릿 추적 문제를 위한 효율적인 슬라이딩 윈도우 기반 URV Decomposition 알고리즘)

  • Lee, Geunseop
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • Template tracking refers to the procedure of finding the most similar image patch corresponding to the given template through an image sequence. In order to obtain more accurate trajectory of the template, the template requires to be updated to reflect various appearance changes as it traverses through an image sequence. To do that, appearance images are used to model appearance variations and these are obtained by the computation of the principal components of the augmented image matrix at every iteration. Unfortunately, it is prohibitively expensive to compute the principal components at every iteration. Thus in this paper, we suggest a new Sliding Window based truncated URV Decomposition (TURVD) algorithm which enables updating their structure by recycling their previous decomposition instead of decomposing the image matrix from the beginning. Specifically, we show an efficient algorithm for updating and downdating the TURVD simultaneously, followed by the rank-one update to the TURVD while tracking the decomposition error accurately and adjusting the truncation level adaptively. Experiments show that the proposed algorithm produces no-meaningful differences but much faster execution speed compared to the typical algorithms in template tracking applications, thereby maintaining a good approximation for the principal components.

Sorting Instagram Hashtags all the Way throw Mass Tagging using HITS Algorithm

  • D.Vishnu Vardhan;Dr.CH.Aparna
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.93-98
    • /
    • 2023
  • Instagram is one of the fastest-growing online photo social web services where users share their life images and videos with other users. Image tagging is an essential step for developing Automatic Image Annotation (AIA) methods that are based on the learning by example paradigm. Hashtags can be used on just about any social media platform, but they're most popular on Twitter and Instagram. Using hashtags is essentially a way to group together conversations or content around a certain topic, making it easy for people to find content that interests them. Practically on average, 20% of the Instagram hashtags are related to the actual visual content of the image they accompany, i.e., they are descriptive hashtags, while there are many irrelevant hashtags, i.e., stophashtags, that are used across totally different images just for gathering clicks and for search ability enhancement. Hence in this work, Sorting instagram hashtags all the way through mass tagging using HITS (Hyperlink-Induced Topic Search) algorithm is presented. The hashtags can sorted to several groups according to Jensen-Shannon divergence between any two hashtags. This approach provides an effective and consistent way for finding pairs of Instagram images and hashtags, which lead to representative and noise-free training sets for content-based image retrieval. The HITS algorithm is first used to rank the annotators in terms of their effectiveness in the crowd tagging task and then to identify the right hashtags per image.

An Efficient Algorithm for Betweenness Centrality Estimation in Social Networks (사회관계망에서 매개 중심도 추정을 위한 효율적인 알고리즘)

  • Shin, Soo-Jin;Kim, Yong-Hwan;Kim, Chan-Myung;Han, Youn-Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In traditional social network analysis, the betweenness centrality measure has been heavily used to identify the relative importance of nodes. Since the time complexity to calculate the betweenness centrality is very high, however, it is difficult to get it of each node in large-scale social network where there are so many nodes and edges. In our past study, we defined a new type of network, called the expanded ego network, which is built only with each node's local information, i.e., neighbor information of the node's neighbor nodes, and also defined a new measure, called the expanded ego betweenness centrality. In this paper, We propose algorithm that quickly computes expanded ego betweenness centrality by exploiting structural properties of expanded ego network. Through the experiment with virtual network used Barab$\acute{a}$si-Albert network model to represent the generic social network and facebook network to represent actual social network, We show that the node's importance rank based on the expanded ego betweenness centrality has high similarity with that the node's importance rank based on the existing betweenness centrality. We also show that the proposed algorithm computes the expanded ego betweenness centrality quickly than existing algorithm.