• Title/Summary/Keyword: Range of Angle

Search Result 2,451, Processing Time 0.028 seconds

Fast-convergence trilinear decomposition algorithm for angle and range estimation in FDA-MIMO radar

  • Wang, Cheng;Zheng, Wang;Li, Jianfeng;Gong, Pan;Li, Zheng
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.120-132
    • /
    • 2021
  • A frequency diverse array (FDA) multiple-input multiple-output (MIMO) radar employs a small frequency increment across transmit elements to produce an angle-range-dependent beampattern for target angle and range detection. The joint angle and range estimation problem is a trilinear model. The traditional trilinear alternating least square (TALS) algorithm involves high computational load due to excessive iterations. We propose a fast-convergence trilinear decomposition (FC-TD) algorithm to jointly estimate FDA-MIMO radar target angle and range. We first use a propagator method to obtain coarse angle and range estimates in the data domain. Next, the coarse estimates are used as initialized parameters instead of the traditional TALS algorithm random initialization to reduce iterations and accelerate convergence. Finally, fine angle and range estimates are derived and automatically paired. Compared to the traditional TALS algorithm, the proposed FC-TD algorithm has lower computational complexity with no estimation performance degradation. Moreover, Cramer-Rao bounds are presented and simulation results are provided to validate the proposed FC-TD algorithm effectiveness.

Joint Range and Angle Estimation of FMCW MIMO Radar (FMCW MIMO 레이다를 이용한 거리-각도 동시 추정 기법)

  • Kim, Junghoon;Song, Sungchan;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.169-172
    • /
    • 2019
  • Frequency-modulated continuous wave(FMCW) radars with array antennas are widely used because of their light weight and relatively high resolution. A usual approach for the joint range and angle estimation of a target using an array FMCW radar is to create a range-angle matrix with the deramped received signal, and subsequently apply two-dimensional(2D) frequency estimation methods such as 2D fast Fourier transform on the range-angle matrix. However, such frequency estimation approaches cause bias errors since the frequencies in the range-angle matrix are not independent. Therefore, we propose a new maximum likelihood-based algorithm for joint range and angle estimation of targets using array FMCW radar, and demonstrate that the proposed algorithm achieves the Cram?r-Rao bounds, both for range as well as angle estimation.

Development of five-hole probe nulling method reliable in complex flow field (복잡한 유동장에서도 신뢰성 있는 5공프로브 널링기법의 개발)

  • Kim, Jin-Gwon;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1449-1457
    • /
    • 1997
  • Since a non-nulling method of five-hole probes is valid only when the flow angle is within the calibrated angle range, it can not be used in a complex flow field. Full angle range pressure coefficient maps show that widely used nulling methods do not guarantee correct alignment of the probe with the flow direction in the unknown complex flow field. Zone decision method and features of zone map were studied by investigating the full angle range pressure coefficient maps. A reliable and efficient new nulling algorithm using zone decision by pressure ordering is proposed and verified. Since the zone decision method by pressure ordering can decide whether the flow is within the calibration angle range or not, it is useful in wide angle nonnulling methods, too.

A Method of Obstacle Detection in the Dust Environment for Unmanned Ground Vehicle (먼지 환경의 무인차량 운용을 위한 장애물 탐지 기법)

  • Choe, Tok-Son;Ahn, Seong-Yong;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1006-1012
    • /
    • 2010
  • For the autonomous navigation of an unmanned ground vehicle in the rough terrain and combat, the dust environment should necessarily be overcome. Therefore, we propose a robust obstacle detection methodology using laser range sensor and radar. Laser range sensor has a good angle and distance accuracy, however, it has a weakness in the dust environment. On the other hand, radar has not better the angle and distance accuracy than laser range sensor, it has a robustness in the dust environment. Using these characteristics of laser range sensor and radar, we use laser range sensor as a main sensor for normal times and radar as a assist sensor for the dust environment. For fusion of laser range sensor and radar information, the angle and distance data of the laser range sensor and radar are separately transformed to the angle and distance data of virtual range sensor which is located in the center of the vehicle. Through distance comparison of laser range sensor and radar in the same angle, the distance data of a fused virtual range sensor are changed to the distance data of the laser range sensor, if the distance of laser range sensor and radar are similar. In the other case, the distance data of the fused virtual range sensor are changed to the distance data of the radar. The suggested methodology is verified by real experiment.

Operating Range Expansion of a Closed-Loop Stepping Motor by Optimal Lead Angle Control (초적 Lead Angle 제어에 의한 폐루프 스테핑 전동기의 운전영역 확대)

  • 우광준;이종언;이현창
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.3
    • /
    • pp.80-87
    • /
    • 1995
  • In this paper, we design the microcontroller-based optimal lead angle control system on the basis of the presented maximum average torque formula of the permanent-type stepping motor with respect to the inductance. We confirm that optimal lead angle enlarges the operating range twice as much and increases the torque over all of the operating range in the case of presented formula as well as experimental results.

  • PDF

Performance Variations of Vaned Diffusers with Solidity and Exit Vane Angle (베인 디퓨저의 솔리디티와 출구 유동각에 따른 성능변화)

  • Cho, S.K.;Kang, S.H.;Cha, B.J.;Lee, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.422-427
    • /
    • 2000
  • The design of low-solidity vaned diffusers and the effect on the performance of a turbocharger compressor is discussed. The effect of vane number and turning angle was investigated while maintaining a basic design with a leading edge angle of $70^{\circ}$, leading and trailing edge radius ratios of 1.1 and 1.3. All results are compared with those obtained with the standard vaneless diffuser configuration and it was shown that all designs increased and shifted the pressure ratio to reduced flowrates. Despite the low-solidity configuration none of the vane designs provided a broad operating range, and the vane leading edge angle was not main factor that system went into the surge condition. The diffuser of higher trailing edge angle improved the flow range for the compressor to operate at lower flow region.

  • PDF

The influence of the genu varum and the genu valgum on malalignment of the lower limb (내반슬, 외반슬의 부정정렬이 하지에 미치는 영향)

  • Moon, Sung-Gi
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2000
  • The influence of the genu varum and the genu valgum in two groups of twenty adult man with deformation on hip joint, knee joint, ankle joint is as follows. 1. Each and all, the statistics that measure tibiofemorial angle indicated the group of the genu varum 168 1.42 and the group of the genu valgum 193 2.21, that was more larger or smaller than normal angle 183 of tibiofemorial. The measure Q-Angle(patellofemorial) indicates the group of the genu varum 9 1.5, the genu valgum 19 2.3, that was larger or smaller than normal angle 13. 2. It showed that range of motion hip joint adduction in the group of the genu varum was more larger than normal range of motion hip joint abduction in the group of the genu valgum was more larger than normal range of motion, hip joint internal rotation in the group of the genu valgum was more larger than normal range of motion, hip joint external rotation in the group of the genu varum was more larger than normal range of motion. 3. range of motion knee joint flexion was simillar to two groups of the genu varum and the genu valgum. On tibial tortion of the leg, the group of the genu varum indicated medial tibial tortion, and the genu valgum indicated lateral tibial tortion. 4. Each groups of the genu varum and the genu valgum in plantarflexion and dorsiflexion of ankle joint. With peak angle, the group of the genu varum showed toe-in that was more smaller than normal angle, and the group of the genu valgum showed toe-out that was more larger than normal angle.

  • PDF

Range Simulation on Spin Effort of golfball (골프공 스핀효과에 따른 비거리 시뮬레이션)

  • Han, Tae-Jong;Kim, Yong-Sun;Lee, Soon-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.117-131
    • /
    • 2003
  • This study simulated the range of golf ball with different projection angles using a drive swing condition. For the simulation purpose, the differential equation of dynamics was induced by using Bernoulli's principle and average back spin frequency, instant velocity, and dimple of golf ball from amateur group, professional group, and Tiger Woods were chosen as the initial condition. The study result indicated that lift coefficient($C_{lift}$) relative to drag coefficient ($C_d$), 0.3 of differential equation was applied differently in terms of back spin Sequency, and when $C_{lift}$ was 0.4 for amateur, 0.5 for professional, and 0.7 for Tiger Woods the projection ranges of ball were closely matched with initial condition. With selected $C_{lift}$ and back spin frequency of initial condition, the ranges with different projection angle was measured as 193m ($13-17^{\circ}$) for amateur, 240m ($9-13^{\circ}$), professional and 273m ($9^{\circ}$)Tiger Woods, respectively. For the range in terms of back spin frequency and projection angle, the amateur group indicated relatively high spin frequency (70 RPS) and showed the maximal range (195m) with $13^{\circ}$ of projection angle. The tendency of longer range with higher projection angle was also found under the different conditions of spin frequency in this group. The professional group showed their maximal range (245m) with conditions of 60RPS of spin frequency and $9^{\circ}$ of projection angle. Their range was decreased dramatically when the spin frequency was reduced to 40-50 RPS. For Tiger Woods, the maximal range was found with 40RPS of spin frequency and the range was decreased notably when the spin frequency was above 40RPS.

Comparison of Hip Internal Rotation Angle in Chronic Low Back Pain Patients According to the Gender (만성 요통환자에서 성별에 따른 고관절 내회전 각도의 비교)

  • Lee, Jae-Young;Han, Sang-Yup;Nam, Hang-Woo;Chung, Bul;Lee, Cha-Ro;Han, Sang-Wook
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.5 no.2
    • /
    • pp.9-16
    • /
    • 2010
  • Objectives : This study is planned to classify different biomechanics of men and women, from the comparison of normal range and hip internal rotation angle in chronic low back pain patients. Methods : We measured the hip internal rotation angle of the 30 men and 30 women patients with low back pain that has been over 3 months in BuCheon Jaseng Hospital of Oriental medicine. We set 35-45 degrees as normal range, and found the patients with exceeding normal range, the patients with normal range, and the patients with under normal range. Results : Men appeared to have less hip internal rotation angle than women. Especially, the men's left hip internal rotation angle was less than normal range. On the other hand, women's right hip internal rotation angle was often larger than normal range which was stastically significant. Conclusions : Contraction of hip external rotation muscle including gluteus maxius muscle and piriformis muscle in men, or relaxation of posterior gluteus medius, gluteus maxius and piriformis muscle with contraction of tensor fasciae latae, a part of hip internal rotation muscle, in women seems to be the basis for biomechanics of chronic low back pain.

  • PDF

Analysis of Static Stability by Modified Mathematical Model for Asymmetric Tractor-Harvester System: Changes in Lateral Overturning Angle by Movement of Center of Gravity Coordinates

  • Choi, Kyu-hong;Kim, Seong-Min;Hong, Sungha
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.127-135
    • /
    • 2017
  • Purpose: Purpose: The usability of a mathematical model modified for analysis of the static stability of an asymmetric tractor-harvester system was investigated. Method: The modified asynchronous mathematical model was validated through empirical experiments, and the effects of movements of the center of gravity (CG) coordinates on the stability against lateral overturning were analyzed through simulations. Results: Changes in the lateral overturning angle of the system were investigated when the coordinates of the CG of the system were moved within the variable range. The errors between simulation results and empirical experiments were compared, and the results were -4.7% at the left side overturning and -0.1% at the right side overturning. The asymmetric system was characterized in such a way that the right side overturning had an increase in overturning angle in the (+) variable range, while it had a decrease in overturning angle in the (-) variable range. In addition, the left side overturning showed an opposite result to that of the right side. At the declination angle (296<${\gamma}$<76), the right side overturning had an increase in the maximum overturning angle of 3.6%, in the minimum overturning angle of 20.3%, and in the mean overturning angle of 15.9%. Furthermore, at the declination angle (284<${\gamma}$<64), the left side overturning had a decrease in the maximum overturning angle of 29.2%, in the minimum overturning angle of 44%, and in a mean overturning angle of 39.7%. Conclusion: The modified mathematical model was useful for predicting the overturning angle of the asymmetric tractor-harvester system, and verified that a movement of the CG coordinates had a critical effect on its stability. In particular, the left side overturning was the most vulnerable to stability, regardless of the direction of declination angle.