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1  |   INTRODUCTION

Unlike the traditional phased-array radar, the multiple-input 
multiple-output (MIMO) radar transmits multiple orthogo-
nal waveforms by multiple elements and receives multiple 
return echoes by multiple elements, leading to remarkable 

enhancement in the degrees of freedom (DOFs) and system 
capacity [1–4]. In application, many direction of arrival esti-
mation algorithms, such as maximal likelihood (ML) [5], mul-
tiple signal classification (MUSIC) [6], and Capon algorithm, 
[7–9] have been investigated. The target angles are obtained 
by the estimation of signal parameters by the rotational in-
variance technique (ESPRIT) algorithm [10]. The propagator 
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method (PM) divides the steering matrix into two submatrices 
A1 and A2, and utilizes the propagation properties of A1 and 
A2 to construct propagator Pc, that is, A2 =PH

c
A1, to obtain 

angle and range information, which avoids eigenvalue decom-
position (EVD) and exhibits low complexity [11]. The trilinear 
alternating least square (TALS) algorithm [12] can be effec-
tively employed to resolve the problem of multiple target de-
tection. Multiparameter estimation is also involved in MIMO 
radar. Two-dimensional (2D) angle estimation is conducted by 
a variant of the propagator algorithm [13]. The joint Doppler 
frequency and angle estimation is investigated [2,14], where 
the compressed sensing and parallel factor algorithms are em-
ployed. However, the range parameter has not been involved.

Fortunately, the frequency diverse array (FDA) can locate tar-
gets in the joint angle-range dimension by employing a small fre-
quency increment across the array elements to provide additional 
DOFs of range, which has been utilized in interference detection, 
joint angle-range beamforming, and spatial filtering. The FDA-
MIMO radar coordinates FDA and MIMO radar to produce 
an angle-range-dependent beampattern [15], which consists 
of FDA in the transmit and phased arrays in the receive array. 
As the FDA-MIMO radar possesses various advantages, such 
as estimating the angle and range of target, improving moving 
target detection performance, and mitigation of the space-range 
sidelobe, it has received considerable attention and many joint 
angle and range estimation algorithms have been proposed. An 
improved algorithm that utilizes the rotational invariance prop-
erty, namely the successive ESPRIT algorithm [16], is proposed, 
and the angles, ranges, and polarization parameters of targets are 
sequentially estimated. The transmit sub-aperture optimization 
method [17] is proposed with convex optimization, whereas 2D 
spectrum peak search (SPS) is involved and hence brings a heavy 
computational load. The reduced-dimension -MUSIC algorithm 
[18] is conducted to reduce the computational complexity, but 
the one-dimensional (1D) SPS is required. A high-accuracy es-
timation scheme [19] with high computational load is proposed 
in the FDA-MIMO radar, which exploits the range dependence 
compensation technique and ML algorithm.

This paper proposes a fast-convergence trilinear decom-
position (FC-TD) algorithm for the monostatic FDA-MIMO 
radar that aims to indicate targets in terms of angle and range 
with low complexity. The monostatic FDA-MIMO radar is 
configured with transmit uniform linear array (ULA) and re-
ceive ULA. Specifically, the received signal is constructed 
as a trilinear model and the traditional TALS algorithm is 
employed. To reduce iteration times and accelerate conver-
gence, the coarse estimates generated by PM are utilized 
instead of the random initialization of the traditional TALS 
algorithm. Subsequently, the fine estimates of the angle 
and range are obtained and automatically paired. Compared 
with the traditional TALS algorithm, the computational 
complexity of the proposed FC-TD algorithm is remark-
ably reduced with no estimation performance degradation. 

Moreover, the proposed FC-TD algorithm outperforms PM 
and ESPRIT algorithms in terms of estimation accuracy. 
Additionally, Cramér-Rao bounds (CRBs) are provided and 
the effectiveness of the proposed FC-TD algorithm is veri-
fied by numerical simulations.

The contributions of this study can be concluded as follows:

1.	 We formulate the problem of angle-range indication of 
targets in the FDA-MIMO radar as a trilinear model.

2.	 We employ coarse estimates generated by PM instead of 
random initialization to reduce the iteration times of the 
traditional TALS algorithm, resulting in faster conver-
gence speed and lower computational complexity with no 
performance degradation.

3.	 We perform the proposed FC-TD algorithm in the data do-
main to detect targets, and the angle and range estimates 
are automatically paired.

The remainder of this paper is summarized as follows: 
The signal model of the FDA-MIMO radar is formulated in 
Section 2. In Section 3, the proposed FC-TD algorithm is inves-
tigated. Next, we describe the analysis complexity, advantages, 
and CRBs in Section 4. In Section 5, the simulation results are 
presented. Finally, the conclusion is presented in Section 6.

Notation: Lower-case (upper-case) bold characters represent 
vectors (matrices). (.)T, (.)*, (.)H, (.)−1, (.)+1 are defined as the 
transpose, conjugate, conjugate-transpose, inverse transforma-
tion, and pseudo inverse transformation. ⊕, ⊗, and ⊙ represent 
the Hadamard product, Kronecker product, and Khatri-Rao prod-
uct. diag(.) and ‖.‖F are to construct a diagonal matrix and calcu-
late Frobenius norm. angle{.} and normal{.} are used to extract 
the phase angle of the complex value and normalize the vector.

2  |   DATA MODEL

2.1  |  FDA-MIMO model

The framework of the monostatic FDA-MIMO is shown in 
Figure 1, where the transmit array consists of N elements and 
the receive array is composed of M elements. Both transmit 
and receive arrays are ULAs. The carrier frequency of the n-
th transmit element is given as [19],

where f1 is the reference frequency, Δf stands for the frequency 
increment across the transmit elements, and Δf ≪ f1 [20]. To 
obtain a unique estimate, the transmit array interspace dT and 
receive array interspace dR are set to half wavelength with re-
spect to the carrier wave of the N-th transmit element, that is,

(1)fn = f1+ (n−1)Δf , n=1,2, … , N,

(2)dT =dR = c∕2fN = c∕2(f1+ (N−1)Δf ),
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where c is the speed of light.
The n-th transmitted signal of the FDA-MIMO radar can 

be presented as [19]:

where T is the pulse duration, E is the total transmitted energy, 
and φn(t) is defined as the unity-energy wave form which satis-
fies the orthogonality constraint, that is [19],

where τ is the time delay. Defining the first receive element as 
the reference point and assuming that the electromagnetic waves 
are transmitted independently in the scenario with non-cooper-
ative targets, the reflected wave received by the m-th receive 
element is expressed as [19]:

where ξ denotes radar cross section and fd,n is the Doppler fre-
quency. Additionally, τn,T and τm,R represent the transmit and 
receive time delay, respectively, which are constructed as,

where τ0 = 2r/c, θ, and r denote the angle and range of target. 
Subsequently, in the noise-free case, the received signal will be 
matched filtered and the n-th output of the m-th receive element 
is represented by [19]

where fd ≪ f1 and Δf ≪ f1.

2.2  |  Single target

According to (7), the output of the m-th receive element can 
be further formulated as,

where ym (t)∈ℂ
N×1, s(t)=

√
E∕N� ej2�fd(t−�0)e−j4�f1r∕c, and 

nm (t)∈ℂ
N×1 is the received noise vector. For all the re-

ceive elements, the total vectorization output can be pre-
sented by [19]

where at (r, �)∈ℂ
N×1 and ar (�)∈ℂ

M×1 are the transmit and 
receive steering vectors [21], that is,

(3)s̃n(t)=

√
E

N
𝜑n(t)ej2𝜋fnt, 0≤ t≤T , n=1, 2,… , N,

(4)�
T

0

�n1
(t)�n2

(t−�)ej2�Δf (n1−n2)tdt=

{
0, n1 ≠n2,∀�,

1, n1 =n2, � =0,

(5)ym(t)=

N∑
n=1

√
E

N
��n(t−�n,T−�m,R)ej2�(fn+fd,n)(t−�n,T−�m,R),

(6a)
�n,T =

1

c
[r−dT(n−1) sin (�)]=

�0

2
−

dT

c
(n−1) sin (�),

(6b)

�m,R =
1

c
[r−dR(m−1) sin (�)]=

�0

2
−

dR

c
(m−1) sin (�),

(7)

ymn(t)

=

√
E

N
�ej2�fd(t−�0)e

−j2�
fn

c
2r

e
j2�

fn+fd

c
[dT(n−1) sin (�)+dR(m−1) sin (�)]

≈

√
E

N
�ej2�fd(t−�0)e

−j4�
f1

c
r
e
−j4�

Δf

c
(n−1)r

e
j2�

f1

c
[dT(n−1) sin (�)+dR(m−1) sin (�)]

(8)ym(t)= e
j2�

dR

�0
(m−1) sin (�)

⎡
⎢⎢⎢⎢⎢⎢⎣

1

e
−j4�

Δf

c
r+j2�

dT

�0
sin (�)

⋮

e
−j4�

Δf

c
(N−1)r+j2�

dT

�0
(N−1) sin (�)

⎤
⎥⎥⎥⎥⎥⎥⎦

s(t),

(9)xs(t)= [yT
1
(t), yT

2
(t), … , yT

M
(t)]T = [ar(𝜃)⊗at(r, 𝜃)]s(t),

(10)at(r, 𝜃)=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

e
−j4𝜋

Δf

c
r+j2𝜋

dT

𝜆0
sin (𝜃)

⋮

e
−j4𝜋

Δf

c
(N−1)r+j2𝜋

dT

𝜆0
(N−1) sin (𝜃)

⎤
⎥⎥⎥⎥⎥⎥⎦

= r(r)⊕d(𝜃),

(11)ar(�)=
[
1, ej2�dR sin (�)∕�0 , … , ej2�dR(M−1) sin (�)∕�0

]T
,

F I G U R E  1   Framework of monostatic FDA-MIMO radar
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where ⊕ is the Hadamard product. The transmit range steering 
vector and transmit angle steering vector are defined as [19],

As shown in (12), the FDA-MIMO radar will be the same 
as the traditional MIMO radar if Δf = 0.

2.3  |  Multiple targets

In the noise case, we assume that there are K independent 
targets with range and angle (rk, θk), k = 1, 2, …, K in the far-
field. The output in (9) can be reconstructed as

where At = [at(r1, θ1), at(r2, θ2),..., at(rK, θK)], Ar = [ar(θ1), 
ar(θ2), ..., ar(θK)], S=[s (1) , s (2) ,… , s (L)]∈ℂ

K×L is the sig-
nal matrix and N=[n (1) , n (2) ,… , n (L)]∈ℂ

MN×L represents 
the noise matrix. In addition, A = Ar ⊙ At, L is the number 
of snapshots, ⊙ represents the Khatri-Rao product, n(l) is the 
white circularly Gaussian noise vector with mean zero and vari-
ance σ2 [22], which is independent of signals, and the signal 
vector s(l) is given by,

3  |   PROPOSED ALGORITHM

3.1  |  Trilinear model

As shown in (14), we can partition X as [23],

where Dm(Ar) is a diagonal matrix consisting of the m-th row of 
Ar, X m is denoted as [24],

In the noise-free case, the (n, l) element of Xm can be con-
structed as [25,26],

where At(n, k) denotes the (n, k) element of At and similarly for 
the others. As shown in (17), the arbitrary element in X can be 
expressed as a trilinear model which is shown in Figures 2, and 
X can be rearranged as two different matrices Y and Z, that is,

In the traditional TALS algorithm, the random initializa-
tion results in many iterations and a heavy computational 
load. To improve computation efficiency, the coarse esti-
mates generated by PM are employed for initialization in-
stead of random initialization estimates, which remarkably 
reduces the iteration times and accelerates convergence.

3.2  |  Initializing with PM

Assuming that the first K rows of steering matrix A are lin-
early independent, we can partition A as

(12)r(r)=
[
1, e−j4�Δfr∕c, … , e−j4�Δf (N−1)r∕c

]T
,

(13)d(�)=
[
1, ej2�dT sin (�)∕�0 , … , ej2�dT(N−1) sin (�)∕�0

]T
.

(14)X=
[
Ar ⊙At

]
S+N=AS+N,

s(l)=
�
s1(l), s2(l), … , sK(l)

�T
=

�
E

N

⎡
⎢⎢⎢⎢⎢⎣

�1 ej2�fd1
(l−�0)e−j4�f0r1∕c

�2 ej2�fd2
(l−�0)e−j4�f0r2∕c

⋮

�K ej2�fdK
(l−�0)e−j4�f0rK∕c

⎤
⎥⎥⎥⎥⎥⎦

.

(15)X=

⎡
⎢⎢⎢⎢⎢⎣

X1

X2

⋮

XM

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

AtD1(Ar)

AtD2(Ar)

⋮

AtDM(Ar)

⎤
⎥⎥⎥⎥⎥⎦

S+

⎡
⎢⎢⎢⎢⎢⎣

N1

N2

⋮

NM

⎤
⎥⎥⎥⎥⎥⎦

,

(16)X
m
=A

t
D

m
(A

r
)S+N

m
, m=1, 2, … , M.

(17)
x(n, m, l)=

K∑
k=1

At(n, k)Ar(m, k)S(k, l)

n=1, 2,… , N, m=1, 2,… , M, l=1, 2,… , L,

(18)

Y=

⎡
⎢⎢⎢⎢⎣

Y1

Y2

⋮

YL

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

ArD1

�
ST

�
ArD2

�
ST

�
⋮

ArDL

�
ST

�

⎤
⎥⎥⎥⎥⎦

AT

t
+

⎡
⎢⎢⎢⎢⎣

N1

N2

⋮

NL

⎤
⎥⎥⎥⎥⎦
=
�
ST⊙Ar

�
AT

t
+

⎡
⎢⎢⎢⎢⎣

N1

N2

⋮

NL

⎤
⎥⎥⎥⎥⎦

,

(19)
Z=

⎡
⎢⎢⎢⎢⎣

Z1

Z2

⋮

Z
N

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

S
T
D1

�
A

t

�
S

T
D2

�
A

t

�
⋮

S
T
D

N

�
A

t

�

⎤
⎥⎥⎥⎥⎦

A
T

r
+

⎡
⎢⎢⎢⎢⎣

N1

N2

⋮

N
N

⎤⎥⎥⎥⎥⎦

=

�
A

t
⊙S

T
�

A
T

r
+

⎡⎢⎢⎢⎢⎣

N1

N2

⋮

N
N

⎤⎥⎥⎥⎥⎦
.

F I G U R E  2   Trilinear model

l
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where A1 ∈ℂ
K×K is assumed to be a nonsingular matrix and 

A2 ∈ℂ
(MN−K)×K. Specifically, A2 can be linearly expressed by 

A1 [27], that is,

where Pc ∈ℂ
K×(MN−K) is a propagator matrix. In the noise case, 

the propagator matrix is calculated as [28]

where X1 and X2 are the first K rows and remaining rows of X, 
respectively. Construct matrix P as

In the noise-free case, we have

then we can partition P as,

where P a and P b stand for the first (M − 1)N rows and 
the last (M − 1)N rows of P, A a and A b denote the first 
(M − 1)N rows and the last (M − 1)N rows of A, Φ θ is a 
diagonal matrix which contains ej2�dT sin (�k)∕�0, k = 1, 2, …, 
K in the diagonal elements. Subsequently, we can achieve 
[29]

Next, we can get �̂𝜃 and Â1 by performing EVD on P+
a

Pb. 
Finally, the coarse angle estimate is expressed as

where �̂
k

𝜃
 is the k-th diagonal element of �̂𝜃.

Similarly, the ranges of targets can be estimated by uti-
lizing the rotational invariance property again. To be more 
specific, the steering matrix in (14) is rearranged as,

where J∈ℂ
MN×L is an elementary row transformation matrix 

which is constructed as [25],

According to (24) and (28), we can have,

where P� =JP, then we can achieve,

where P′
a
 and P′

b
 represent the first (N − 1)M rows and the last 

(N − 1)M rows of P′; A′
a
 and A′

b
 denote the first (N − 1)M rows 

and the last (N − 1)M rows of A′; Φ r,θ is a diagonal matrix 
which contains e−j4�rkΔf∕c+j2�dR sin (�k)∕�0; and k = 1, 2, …, K in 
the diagonal elements. Next, the Φ r,θ can be estimated as.

where Â1 is utilized to make �̂𝜃 and �̂r,𝜃 have the same permu-
tation ambiguity, which means that the coarse angle estimates 
and coarse range estimates can be automatically paired. Next, 
we can have.

where �̂c,𝜃 stands for a diagonal matrix which contains 
e−j2𝜋dT sin (𝜃̂c, k)∕𝜆0, k  =  1, 2, …, K in the diagonal elements. 
Finally, the coarse range estimate is represented as.

where �̂
k

r
 is the k-th diagonal element of �̂r.

3.3  |  Trilinear decomposition

The traditional TALS algorithm [30] is employed to decom-
pose the trilinear model, and the coarse estimates are utilized 
to accelerate convergence.

The major steps are given below. Perform least square 
(LS) fitting to X, that is,

(20)A=

[
A1

A2

]
,

(21)A2 =PH

c
A1,

(22)P̂c = (X1XH

1
)−1X1XH

2
,

(23)P=

[
IK

P̂
H

c

]
.

(24)PA1 =A,

(25)

[
Pa

Pb

]
A1 =

[
Aa

Ab

]
=

[
Aa

Aa��

]
,

(26)P+
a

Pb =A1��A−1

1
.

(27)𝜃̂c,k = arcsin

⎛⎜⎜⎜⎝

angle
�
�̂

k

𝜃

�
𝜆0

2𝜋dR

⎞⎟⎟⎟⎠
, k=1, 2, … , K,

(28)A� =JA,

(29)J(i, j)=

{
1, i= (n−1)M+m+1, j=mN+n n=1, 2, … , N,

0, else m=0, 1, … , M−1.

(30)JPA1 =P�A1 =A�,

(31)

[
P�

a

P�
b

]
A1 =

[
A�

a

A�
b

]
=

[
A�

a

A�
a
�r,�

]
,

(32)�̂r,𝜃 = Â
−1

1
P�+

a
P�

b
Â1,

(33)�̂r = �̂r,𝜃�̂c,𝜃 ,

(34)r̂c,k = arcsin

⎛⎜⎜⎜⎝
−

angle
�
�̂

k

r

�
c

4𝜋Δf

⎞⎟⎟⎟⎠
, k=1, 2, … , K,
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then Ât, Âr, and Ŝ will be unique up to permutation and scaling 
of columns, that is,

where E1, E2, and E3 are the estimation error matrices; η1, η2, 
and η3 are the diagonal scaling matrices satisfying η1η2η3 = I 
K; and �′ is the permutation matrix.

3.4  |  Angle and range estimation

To estimate the target angles, we first normalize the receive 
steering vectors and extract their phase angle, that is,

where â′
r
(𝜃k) is the k-th column of Â

′

r
. Next, perform LS fitting 

to ĝk, that is,

where ck = [ck0, �k]T ∈ℝ
2×1, ck0 is parameter error, θk is the tar-

get angle and,

Finally, the K solutions of ck are established as,

where 𝜃̂k is the fine angle estimate. Subsequently, the angle-de-
pendent decomposition vector is formulated to decompose the 
angle and range information, that is,

Next, the transmit range steering vector is estimated as 
[32],

(44a)Ât =At�
�
�1+E1,

(44b)Âr =Ar�
�
�2+E2,

(44c)Ŝ=S��
�3+E3,

(45)ĝk =angle (normal(â�
r
(𝜃k))),

(46)min
ck

‖‖Gck − ĝk
‖‖2

F
, k=1,2,… , K,

G=

⎡
⎢⎢⎢⎢⎣

1 0

1 2�dR∕�0

⋮ ⋮

1 (M−1) 2�dR∕�0

⎤
⎥⎥⎥⎥⎦
∈ℂ

M×2.

(47)ĉk = [ĉk0,𝜃̂k]T = (GTG)−1GTĝk, k=1, 2, … , K,

(48)d�(𝜃̂k)= [1,e−j2𝜋dT sin 𝜃̂k∕𝜆0 , … , e−j2𝜋(N−1)dT sin 𝜃̂k∕𝜆0 ]T, k=1, 2, … , K.

(49)r̂(rk)= â�
t
(rk,𝜃k)⊕d�(𝜃̂k), k=1, 2, … , K,

Then the LS update for S is [30]

where Âr and Ât are the estimates of Ar and At, that are previ-
ously obtained but initialized for the first time by (28) and (34), 
respectively. According to (18), LS fitting is,

Next, the LS update for A t is,

where Ŝ and Âr are the estimates of S and Ar, that are previously 
obtained. According to (19), LS fitting is,

The LS update for Ar is,

where Ât and Ŝ are the estimates of At and S, that are previously 
obtained. Denote residuals matrix and the sum of squared resid-
uals (SSR) as [30],

respectively, where cuv stands for the (u,v) element of C. 
According to (36), (38), and (40), the matrix update of Ŝ, Ât, 
and Âr is repeated until SSR converges and we can get the final 
estimates Ŝ

′
, Â

′

t
, and Â

′

r
.

Consider the received signal matrix in (15) 
Xm = AtDm(Ar)S + N m, m = 1, 2, …, M, where At ∈ℂ

N×K, 
Ar ∈ℂ

M×K, and ST ∈ℂ
L×K. According to the theorem [31], if 

At, A r, and S are full k-rank and the parameter identifiability 
satisfies,

(35)min
Ar ,At ,S

‖‖‖X−
(
Ar ⊙At

)
S
‖‖‖

2

F
.

(36)Ŝ=
(

Âr ⊙ Ât

)
+X,

(37)min
Ar ,At ,S

‖‖‖Y−
(
ST⊙Ar

)
AT

t

‖‖‖
2

F
.

(38)�
AT

t
=
(

Ŝ
T
⊙ Âr

)
+Y,

(39)min
Ar ,At ,S

‖‖‖Z−
(
At ⊙ST

)
AT

r

‖‖‖
2

F
.

(40)Â
T

r
=
(

Ât ⊙ Ŝ
T
)
+Z,

(41)C=X−
(

Âr ⊙ Ât

)
Ŝ,

(42)SSR=

MN∑
u

L∑
v

||cuv
||2,

(43)kAt
+kAr

+kST ≥2K+2,
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where â′
t
(rk,𝜃k) is the k-th column of Â′

t
 and ⊕ is the Hadamard 

product. Similarly, we normalize the transmit range steering 
vector and extract their phase angle, that is,

Perform LS fitting to ĥk, that is,

where pk = [pk0, rk]T ∈ℝ
2×1, pk0 is parameter error, rk is the 

range of target and,

Finally, the K solutions of p k are calculated as,

where r̂k is the fine range estimate.
The detailed steps of the proposed FC-TD algorithm can 

be summarized as:

	 1.	 Calculate P̂c and P via (22) and (23).
	 2.	 Perform EVD to P+

a
Pb to obtain �̂𝜃 and Â1 via (26), and 

calculate 𝜃̂c,k via (27).
	 3.	 Compute P′ = JP and �̂r,𝜃 = Â

−1

1
P�+

a
P�

b
Â1 via (32).

	 4.	 Calculate �̂r = �̂r,𝜃�̂c,𝜃 and r̂c,k via (33) and (34).
	 5.	 Apply LS fitting to S via (36).
	 6.	 Apply LS fitting to A t via (38).
	 7.	 Apply LS fitting to A r via (40).
	 8.	 Repeat step 5 to step 7 until convergence and obtain Ŝ

′
, 

Â
′

t
, and Â

′

r
.

	 9.	 Calculate 𝜃̂k and construct d′(𝜃̂k) via (47) and (48).
	10.	 Formulate r̂(rk) and compute r̂k via (49) and (52).

4  |   PERFORMANCE ANALYSIS

4.1  |  Complexity analysis

As the random initialization is replaced by the coarse 
estimates, the proposed FC-TD algorithm has much 

lower computational load over the traditional TALS al-
gorithm. In the proposed FC-TD algorithm, the com-
plexity of PM is denoted as O(2K2L  +  KL(MN  −  K) 
+7K2MN − 3K2(M + N)+4K3 + K) and the complexity of 
each iteration of TALS is represented as O(2K2(MN + NK
+ML))+MNK  +  NLK+MLK  +  3K3+3KMNL). The total 
complexity of the proposed FC-TD algorithm is defined as 
O(2K2L)+KL(MN − K)+7K2MN − 3K2(M + N)+4K3 + K+
q2[(2K2 + K)(MN + NL+ML)+3(K3 + KMNL)]+N), where 
q2 is the iteration times of the proposed FC-TD algorithm. 
Specifically, the complexity of the traditional TALS [30], 
proposed FC-TD, PM [11], and ESPRIT [16] algorithms is 
listed in Table 1, where q1 is the iteration times of the tradi-
tional TALS algorithm.

According to (42), differential sum of squared residuals 
(DSSR) is defined as,

where SSRq denotes the SSR of the q-th iteration, SSR0 is the 
SSR in the convergence case. For better illustration, the iteration 
times of the traditional TALS and proposed FC-TD algorithm 
are compared in Figure  3, where K  =  3 noncoherent targets 
with (θ1, r1) = (10°, 200 m), (θ2, r2) = (20°, 220 m), and (θ3, 
r3) = (30°, 240 m) are considered, Δf = 300 KHz, f0 = 10 GHz, 
and SNR = 5 dB. It is shown that the iteration times of the pro-
posed FC-TD algorithm is much less than that of the traditional 

(50)ĥk =−angle (normal(r̂(rk))).

(51)min
pk

‖‖‖Hpk − ĥk
‖‖‖

2

F
, −k=1, 2, … , K,

H=

⎡
⎢⎢⎢⎢⎣

1 0

1 4�Δf∕c

⋮ ⋮

1 (N−1) 4�Δf∕c

⎤
⎥⎥⎥⎥⎦
∈ℂ

N×2.

(52)p̂k = [p̂k0, r̂k]T = (HTH)−1HTĥk, k=1, 2, … , K,

(53)DSSR=SSRq−SSR0,

PM O(2K2L + KL(MN − K) + 7K2MN − 3K2(M + N) + 4K3 + K)

ESPRIT O(L(MN)2 + (MN)3 + 2K2(2MN − N−M) + 6K3)

TALS O(q1[(2K2 + K)(MN + NL+ML) + 3(K3 + KMNL)] + N)

FC-TD O(2K2L) + KL(MN − K) + 7K2MN − 3K2(M + N) + 4K3 + K + q2[(2K2 + K)
(MN + NL + ML) + 3(K3 + KMNL)] + N)

T A B L E  1   Computational complexity 
comparison

F I G U R E  3   Iteration times comparison (N = 6, M = 6, L = 400)

0 20 40 60 80 100

10–1

100

101

102

103

104

Iteration times

D
SS

R

FC-TD
TALS



      |  127WANG et al.

TALS algorithm, that is, q1 = 96, q2 = 9, which further verifies 
that the proposed FC-TD algorithm enjoys lower computational 
complexity.

The complexity comparison of different algorithms is 
shown in Figure 4, where K = 3. Note that the iteration times 
remain basically unchanged for different array element and 
snapshot numbers, so we choose q1 = 96, q2 = 9 for all cases 
in Figure  4. As shown in Figure  4A, we can find that the 
PM has lower complexity than each iteration of the TALS 
algorithm, which means that the initialization of PM has little 
effect on total complexity. Meanwhile, the complexity of PM 
is much lower than that of the ESPRIT algorithm, which is 
more suitable for parameter initialization. Figures 4B and 4C 
depict the complexity comparison of different algorithms vs 
the number of snapshots and transmit elements. The com-
plexity of the proposed FC-TD algorithm is much lower than 
that of the traditional TALS algorithm due to fewer iterations.

4.2  |  Advantages

We summarize the advantages of the proposed FC-TD algo-
rithm as follows:

1.	 The proposed FC-TD algorithm has much lower compu-
tational complexity than the traditional TALS algorithm 
due to the utilization of coarse estimates.

2.	 The proposed FC-TD algorithm outperforms the PM and 
ESPRIT algorithms and has the same estimation perfor-
mance compared to the traditional TALS algorithm.

3.	 The coupling information of angle and range is decom-
posed, and the angle and range estimates are automatically 
paired.

Remark 1  The proposed FC-TD algorithm is different from 
the fast parallel factor decomposition algorithm [30] 
First, the algorithm [30] is performed in the multiple 
invariance array, but the proposed FC-TD algorithm is 
investigated in the FDA-MIMO radar. Second, the algo-
rithm [30] only involves 1D angle estimation problem 
while the proposed FC-TD algorithm studies the 2D joint 
angle and range estimation problem. Third, the algorithm 
[30] utilizes multiple identical ULAs with displacement, 
but the proposed FC-TD algorithm only employs two 
ULAs. Thus, the proposed FC-TD algorithm can be re-
garded as an extension of the algorithm [30].

Remark 2  The proposed FC-TD algorithm is different from 
the ESPRIT algorithm. First, the ESPRIT algorithm 
detects the target by performing EVD to the received 
signal, but the proposed FC-TD algorithm resolves the 
target localization problem in the data domain. Second, 
the ESPRIT algorithm can give the closed-form solu-
tion of the estimate but the proposed FC-TD algorithm 
calculates the solution by iteration. Finally, the proposed 
FC-TD algorithm utilizes the rotational invariance of 

FIGURE 4   (A) Complexity comparison vs receive elements (N = 6, 
L = 400). (B) Complexity comparison vs snapshots (N = 6, M = 6). (C) 
Complexity comparison vs transmit elements (M = 6, L = 400)
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multimatrix while ESPRIT uses the rotational invari-
ance of two matrices, thus the proposed FC-TD algo-
rithm can be seen as an extension of ESPRIT.

Remark 3  We assume the source number K is known in this 
study and if not, we can estimate it by the methods in 
[33,34].

4.3  |  Cramér-Rao Bound

The CRBs of angle and range in the monostatic FDA-MIMO 
radar are defined as [35],

where D� = [d1� d2� … , dK�], dk𝜃 =𝜕(b(𝜃k)⊗a(rk, 𝜃k))∕𝜕𝜃k, 
Dr = [d1r, d2r, … , dKr], and dkr =𝜕(b(𝜃k)⊗a(rk, 𝜃k))∕𝜕rk. In 
addition, �⊥

A
= IMN −A(A

H

A)−1A
H and P= (1∕L)

∑L

l=1
s(l)sH(l).

5  |   SIMULATION RESULTS

In this section, the effectiveness of the proposed FC-TD al-
gorithm is validated by numerical simulations. The root mean 
square error (RMSE) of angle and range is defined as

where 𝛽k,p is defined as the k-th angle or range estimate of the 
p-th Monte Carlo trial, βk denotes the angle or range of k-th 
target, and P stands for the number of Monte Carlo trials. In 
all simulations except Figures 8–10, K = 3 noncoherent targets 
with (θ1, r1) = (10°, 200 m), (θ2, r2) = (20°, 220 m), and (θ3, 
r3) = (30°, 240 m) are considered. Unless otherwise stated, all 
the simulations operating at f0 = 10 GHz and Δf = 300 KHz.

As shown in Figure  5, the scatter diagram of the joint 
angle and range estimation result is provided to validate the 
reliability of the proposed FC-TD algorithm, where N = 6, 
M = 8, L = 200, and SNR = 5 dB. To this end, we carry out 
P = 200 Monte Carlo trials. It is shown that the angles and 
ranges of targets can be successfully estimated.

For better illustration, the comparison of estimation per-
formance of different algorithms in the FDA-MIMO radar 
is shown in Figures 6 and 7, where N = 6 and M = 8 are 

(54a)CRB𝜃 =
𝜎2

2L
{Re[(DH

𝜃
�

⊥

A
D𝜃)⊕PT]}−1,

(54b)CRBr =
𝜎2

2L
{Re[(DH

r
�

⊥

A
Dr)⊕PT]}−1,

(55)RMSE𝛽 =
1

K

K∑
k=1

√√√√ 1

P

P∑
p=1

(𝛽k,p−𝛽k)2,

F I G U R E  5   Joint angle and range estimation result of 
proposed FC-TD algorithm (N = 6, M = 8, K = 3, L = 200, P = 200, 
SNR = 5 dB)
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used. All results are calculated by P = 600 Monte Carlo tri-
als. Particularly, the proposed FC-TD algorithm is compared 
with the traditional TALS and PM algorithms. The ESPRIT 
algorithm and CRB are also involved.

Figure 6 depicts the angle and range estimation perfor-
mance with respect to SNR, respectively, where 200 snap-
shots are employed for each trial. In Figure 7, the angle and 
range detection performance vs the number of snapshots is 
considered, where SNR is set to 5  dB. It is clear that the 
angle and range estimation performance of all algorithms 
is improved with the increase of SNR and the number of 
snapshots. Moreover, the proposed FC-TD algorithm out-
performs the PM and ESPRIT algorithms in terms of estima-
tion accuracy. Note that the curves of the traditional TALS 
algorithm and proposed FC-TD algorithm are overlapped, 

proving that the proposed FC-TD algorithm can decrease 
computational complexity but with an estimation perfor-
mance degradation.

In Figure  8, the angle and range estimation perfor-
mance of the proposed FC-TD algorithm with different 
numbers of targets against SNR is given, where N  =  6, 
M = 8, L = 200, and P = 600 Monte Carlo trials are con-
ducted for simulation. It is shown that the angle and range 
estimation performance degrades with an increased num-
ber of targets.

Figure  9 plots the angle and range estimation per-
formance of the proposed FC-TD algorithm vs different 
transmitter element numbers, where M = 6, L = 300, tar-
get 1, and target 2 are detected. To this end, we carry out 
P = 600 Monte Carlo trials. The angle and range estimation 

F I G U R E  7   (A) Angle RMSE of different algorithms vs 
snapshots, (B) Range RMSE of different algorithms vs snapshots 
(N = 6, M = 8, K = 3, P = 200, SNR = 5 dB)
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F I G U R E  8   (A) Angle RMSE of different K vs SNR, (B) Range 
RMSE of different K vs SNR (N = 6, M = 8, L = 200, P = 200)
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performance of the proposed FC-TD algorithm improves 
with the increase of N, which benefits from antenna diver-
sity gain.

In this simulation, the parameter estimation performance 
of the closely spaced targets is shown. Assume there are two 
targets need that to be detected and the estimates of the two 
targets are defined as (𝜃̂4, r̂4) and (𝜃̂5, r̂5). The two targets can 
be detected if |||𝜃− 𝜃̂

|||< ||𝜃4−𝜃5
|| ∕2 and |r− r̂|< ||r4−r5

|| ∕2. To 
investigate the estimation probability of the proposed algo-
rithm, we select two targets of (θ4, r4) = (20, 200) and (θ5, 
r5) = (21, 202). Figure 10 shows the estimation probability of 
the proposed FC-TD algorithm and the conventional TALS 
algorithm vs SNR. It is clear that the proposed FC-TD al-
gorithm has almost the same resolution performance as the 
conventional TALS algorithm, and they all improve with in-
creased SNR.

6  |   CONCLUSION

In this study, we propose an FC-TD algorithm for joint angle 
and range estimation in the monostatic FDA-MIMO radar. 
The problem of joint angle and range estimation is first linked 
to a trilinear model and the traditional TALS algorithm. To 
reduce excessive iterations and accelerate convergence, the 
random initialization is replaced by the coarse estimates gen-
erated by PM. As a result, the computational complexity of 
the traditional TALS algorithm is remarkably reduced with 
no performance degradation. In addition, the coupling infor-
mation of angle and range is decomposed, and the angle and 
range estimates are automatically paired. Furthermore, the 
CRBs of angle and range are provided and the effectiveness 
of the proposed FC-TD algorithm is validated by numerical 
simulations.

F I G U R E  9   (A) Angle RMSE of different N vs SNR, (B) Range 
RMSE of different N vs SNR (M = 6, K = 2, L = 300, P = 600)
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F I G U R E  1 0   (A) Angle resolution vs SNR, (B) Range resolution 
vs SNR (N = 6, M = 8, K = 2, L = 200, P = 200)
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