• Title/Summary/Keyword: Range accuracy

Search Result 2,694, Processing Time 0.035 seconds

New algorithm to estimate proton beam range for multi-slit prompt-gamma camera

  • Ku, Youngmo;Jung, Jaerin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3422-3428
    • /
    • 2022
  • The prompt gamma imaging (PGI) technique is considered as one of the most promising approaches to estimate the range of proton beam in the patient and unlock the full potential of proton therapy. In the PGI technique, a dedicated algorithm is required to estimate the range of the proton beam from the prompt gamma (PG) distribution acquired by a PGI system. In the present study, a new range estimation algorithm was developed for a multi-slit prompt-gamma camera, one of PGI systems, to estimate the range of proton beam with high accuracy. The performance of the developed algorithm was evaluated by Monte Carlo simulations for various beam/phantom combinations. Our results generally show that the developed algorithm is very robust, showing very high accuracy and precision for all the cases considered in the present study. The range estimation accuracy of the developed algorithm was 0.5-1.7 mm, which is approximately 1% of beam range, for 1×109 protons. Even for the typical number of protons for a spot (1×108), the range estimation accuracy of the developed algorithm was 2.1-4.6 mm and smaller than the range uncertainties and typical safety margin, while that of the existing algorithm was 2.5-9.6 mm.

Accuracy Improvement of Stereo-Based Distance Measurement for Close Range Vessel Positioning

  • Ogura, Tadashi;Mizuchi, Yoshiaki;Kim, Young-Bok;Choi, Yong-Woon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • This paper describes a distance measurement system with high accuracy that utilizes a stereo-based camera and a pan-tilt unit for automatically maintaining the positional relationship between a vessel and a target on the side of a facility at a close range. The measurement system offers an advantage in that it can measure the distance to a target while tracking it. In order to improve the ability to control the position of a vessel between it and a target while maintaining the distance especially at a close range, the accuracy of the measurement system has to be improved. The accuracy of the distance measured by our system is increased with revisions of the conclusively generated data of distance measurement. We verified the accuracy of our system from an experiment, which generated results that had an accuracy of 30 mm for distances in the range between 2-8 m.

Implementation of Bayesian Filter Method and Range Measurement Analysis for Underwater Robot Localization (수중로봇 위치추정을 위한 베이시안 필터 방법의 실현과 거리 측정 특성 분석)

  • Noh, Sung Woo;Ko, Nak Yong;Kim, Tae Gyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • This paper verifies the performance of Extended Kalman Filter(EKF) and MCL(Monte Carlo Localization) approach to localization of an underwater vehicle through experiments. Especially, the experiments use acoustic range sensor whose measurement accuracy and uncertainty is not yet proved. Along with localization, the experiment also discloses the uncertainty features of the range measurement such as bias and variance. The proposed localization method rejects outlier range data and the experiment shows that outlier rejection improves localization performance. It is as expected that the proposed method doesn't yield as precise location as those methods which use high priced DVL(Doppler Velocity Log), IMU(Inertial Measurement Unit), and high accuracy range sensors. However, it is noticeable that the proposed method can achieve the accuracy which is affordable for correction of accumulated dead reckoning error, even though it uses only range data of low reliability and accuracy.

Estimation of Ionospheric Delays in Dual Frequency Positioning - Future Possibility of Using Pseudo Range Measurements -

  • Isshiki, Hiroshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.185-190
    • /
    • 2006
  • The correct estimation of the ionospheric delays is very important for the precise kinematic positioning especially in case of the long baseline. In case of triple frequency system, the ionospheric delays can be estimated from the measurements, but, in case of dual frequency system, the situation is not so simple. The precision of those supplied by the external information source such as IONEX is not sufficient. The high frequency component is neglected, and the precision of the low frequency component is not sufficient for the long baseline positioning. On the other hand, the high frequency component can be estimated from the phase range measurements. If the low frequency components are estimated by using the external information source or pseudo range measurements, a more reasonable estimation of the ionospheric delays may be possible. It has already been discussed by the author that the estimation of the low frequency components by using the external information source is not sufficient but fairly effective. The estimation using the pseudo range measurements is discussed in the present paper. The accuracy is not sufficient at present because of the errors in the pseudo range measurements. It is clarified that the bias errors in the pseudo range measurements are responsible for the poor accuracy of the ionospheric delays. However, if the accuracy of the pseudo range measurements is improved in future, the method would become very promising.

  • PDF

Implementation of High Range Resolution FMCW Radar for Short-Range Automotive Applications (차량용 근거리 계측을 위한 고분해능 FMCW 레이더의 구현)

  • 김찬헌;김수범;공영균;김영수
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.324-327
    • /
    • 2001
  • In this paper, a 24GHz FMCW radar system which measures the range and the relative velocity of a vehicle in close range is described. The intended ranging accuracy is 15cm and a possible system concept to achieve this objective is presented. The VCO nonlinearity correction method using a reference delay-line and the data extrapolation algorithms based on AR(autoregressive) model are applied. The implemented system shows relatively satisfactory results in ranging accuracy.

  • PDF

A Transverse Load Sensor with Reconfigurable Measurement Accuracy Based on a Microwave Photonic Filter

  • Chen, Han;Li, Changqing;Min, Jing
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.519-524
    • /
    • 2018
  • We propose a transverse load sensor with reconfigurable measurement accuracy based on a microwave photonic filter in the $K_u$ band, incorporating a polarization-maintaining fiber Bragg grating. A prototype sensor with a reconfigurable measurement accuracy tuning range from 6.09 to 9.56 GHz/(N/mm), and corresponding minimal detectable load range from 0.0167 to 0.0263 N/mm, is experimentally demonstrated. The results illustrate that up to 40% manufacturing error in the grating length can be dynamically calibrated to the same corresponding measurement accuracy for the proposed transverse load sensor, by controlling the semiconductor optical amplifier's injection current in the range of 154 to 419 mA.

Design of an AM Radar Module with Improved Range Accuracy (거리 측정 정확도를 개선한 AM 레이더 모듈 설계)

  • Choi, Mun-Gak;Woo, Dong-Sik;Kang, Il-Heung;No, Hyung-Woo;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.911-918
    • /
    • 2010
  • With limitation of frequency bandwidth, the range accuracy of typical radars is limited. In this paper, for short distance measurements, the use of an AM(Amplitude Modulated) radar which provides improved range accuracy is proposed. The AM radar signal consists of a carrier frequency signal and double-sideband components. The fabricated AM radar operates with +10 dBm output power and 35 dB receiver gain at 24.128 GHz center frequency with 20 MHz bandwidth, and the range accuracy is measured as ${\pm}15\;cm$.

Performance prediction of gamma electron vertex imaging (GEVI) system for interfractional range shift detection in spot scanning proton therapy

  • Kim, Sung Hun;Jeong, Jong Hwi;Ku, Youngmo;Jung, Jaerin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2213-2220
    • /
    • 2022
  • The maximum dose delivery at the end of the beam range provides the main advantage of using proton therapy. The range of the proton beam, however, is subject to uncertainties, which limit the clinical benefits of proton therapy and, therefore, accurate in vivo verification of the beam range is desirable. For the beam range verification in spot scanning proton therapy, a prompt gamma detection system, called as gamma electron vertex imaging (GEVI) system, is under development and, in the present study, the performance of the GEVI system in spot scanning proton therapy was predicted with Geant4 Monte Carlo simulations in terms of shift detection sensitivity, accuracy and precision. The simulation results indicated that the GEVI system can detect the interfractional range shifts down to 1 mm shift for the cases considered in the present study. The results also showed that both the evaluated accuracy and precision were less than 1-2 mm, except for the scenarios where we consider all spots in the energy layer for a local shifting. It was very encouraging results that the accuracy and precision satisfied the smallest distal safety margin of the investigated beam energy (i.e., 4.88 mm for 134.9 MeV).

A Long Range Accurate Ultrasonic Distance Measurement System by Using Period Detecting Method (주기인식 검출방식을 이용한 장거리 정밀 초음파 거리측정 시스템 개발)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.41-49
    • /
    • 2007
  • In this paper, we proposed a new ultrasonic distance measurement system with high accuracy and long range. To improve accuracy and enlarge range, the time of flight of ultrasonic is calculated by the period detecting method. In the proposed ultrasonic distance measurement system, the ultrasonic transmitter and receiver are separated but synchronized by RF(Radio frequency) module. The experiment has been implemented from short distance 1m to maximum available distance 30m. And the period detecting method is compared with the conventional threshold level method. Experimental results show the accuracy and range of the distance measurement are improved by this period detecting method.

An Improved Vehicle Tracking Scheme Combining Range-based and Range-free Localization in Intersection Environment (교차로 환경에서 Range-based와 Range-free 위치측정기법을 혼합한 개선된 차량위치추적기법)

  • Park, Jae-Bok;Koh, Kwang-Shin;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.106-116
    • /
    • 2011
  • USN(Ubiquitous Sensor Network) environment permits us to access whatever information we want, whenever we want. The technologies to provide a basement to these environments premise an accurate location establishment. Especially, ITS(Intelligent Transportation Systems) is easily constructed by applying USN technology. Localization can be categorized as either Range-based or Range-free. Range-based is known to be not suitable for the localization based on sensor network, because of the irregularity of radio propagation and the additional device requirement. The other side, Range-free is much appropriated for the resource constrained sensor network because it can actively locate by means of the communication radio. But, generally the location accuracy of Range-free is low. Especially, it is very low in a low-density environment. So, these two methods have both merits and demerits. Therefore, it requires a new method to be able to improve tracking accuracy by combining the two methods. This paper proposes the tracking scheme based on range-hybrid, which can markedly enhance tracking accuracy by effectively using the information of surrounding nodes and the RSSI(Received Signal Strength Indication) that does not require additional hardware. Additionally, we present a method, which can improve the accuracy of vehicle tracking by adopting the prediction mechanism. Simulation results show that our method outperforms other methods in the transportation simulation environment.