Browse > Article
http://dx.doi.org/10.1016/j.net.2022.04.019

New algorithm to estimate proton beam range for multi-slit prompt-gamma camera  

Ku, Youngmo (Department of Nuclear Engineering, Hanyang University)
Jung, Jaerin (Department of Nuclear Engineering, Hanyang University)
Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University)
Publication Information
Nuclear Engineering and Technology / v.54, no.9, 2022 , pp. 3422-3428 More about this Journal
Abstract
The prompt gamma imaging (PGI) technique is considered as one of the most promising approaches to estimate the range of proton beam in the patient and unlock the full potential of proton therapy. In the PGI technique, a dedicated algorithm is required to estimate the range of the proton beam from the prompt gamma (PG) distribution acquired by a PGI system. In the present study, a new range estimation algorithm was developed for a multi-slit prompt-gamma camera, one of PGI systems, to estimate the range of proton beam with high accuracy. The performance of the developed algorithm was evaluated by Monte Carlo simulations for various beam/phantom combinations. Our results generally show that the developed algorithm is very robust, showing very high accuracy and precision for all the cases considered in the present study. The range estimation accuracy of the developed algorithm was 0.5-1.7 mm, which is approximately 1% of beam range, for 1×109 protons. Even for the typical number of protons for a spot (1×108), the range estimation accuracy of the developed algorithm was 2.1-4.6 mm and smaller than the range uncertainties and typical safety margin, while that of the existing algorithm was 2.5-9.6 mm.
Keywords
Proton therapy; Range uncertainty; Prompt gamma imaging; Multi-slit prompt-gamma camera; Range estimation; Monte Carlo simulation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. Tattenberg, T.M. Madden, B.L. Gorissen, T. Bortfeld, K. Parodi, J. Verburg, Proton range uncertainty reduction benefits for skull base tumors in terms of normal tissue complication probability (NTCP) and healthy tissue doses, Med. Phys. (2021), https://doi.org/10.1002/mp.15097.   DOI
2 S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, GEANT4 - a simulation toolkit, Nucl. Instr. Meth. Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 506 (2003) 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8.   DOI
3 C.H. Kim, Y.S. Yeom, N. Petoussi-Henss, M. Zankl, W.E. Bolch, C. Lee, C. Choi, T.T. Nguyen, K. Eckerman, H.S. Kim, M.C. Han, R. Qiu, B.S. Chung, H. Han, B. Shin, ICRP publication 145: adult mesh-type reference computational phantoms, Ann. ICRP 49 (2020) 13-201, https://doi.org/10.1177/0146645319893605.   DOI
4 G. collaboration, Physics Lists - Use Cases - Reference Physics Lists, ((n.d.)).
5 S.H. Kim, J.H. Park, Y. Ku, H.S. Lee, Y. Kim, C.H. Kim, J.H. Jeong, Improvement of statistics in proton beam range measurement by merging prompt gamma distributions: a preliminary study, J. Radiat. Prot. Res. 44 (2019) 1-7, https://doi.org/10.14407/jrpr.2019.44.1.1.   DOI
6 L. Nenoff, M. Priegnitz, G. Janssens, J. Petzoldt, P. Wohlfahrt, A. Trezza, J. Smeets, G. Pausch, C. Richter, Sensitivity of a prompt-gamma slit-camera to detect range shifts for proton treatment verification, Radiother. Oncol. 125 (2017) 534-540, https://doi.org/10.1016/j.radonc.2017.10.013.   DOI
7 I. Perali, A. Celani, P. Busca, C. Fiorini, A. Marone, M. Basilavecchia, T. Frizzi, F. Roellinghoff, J. Smeets, D. Prieels, F. Stichelbaut, F. Vander Stappen, S. Henrotin, A. Benilov, Prompt gamma imaging with a slit camera for realtime range control in proton therapy: experimental validation up to 230 MeV with HICAM and development of a new prototype, IEEE Nucl. Sci. Symp. Conf. Rec. (2012) 3883-3886, https://doi.org/10.1109/NSSMIC.2012.6551890.   DOI
8 P. Maggi, S. Peterson, R. Panthi, D. Mackin, H. Yang, Z. He, S. Beddar, J. Polf, Computational model for detector timing effects in Compton-camera based prompt-gamma imaging for proton radiotherapy, Phys. Med. Biol. 65 (2020), https://doi.org/10.1088/1361-6560/ab8bf0.   DOI
9 C.H. Kim, H.R. Lee, S.H. Kim, J.H. Park, S. Cho, W.G. Jung, Gamma electron vertex imaging for in-vivo beam-range measurement in proton therapy: experimental results, Appl, Phys. Lett. 113 (2018), https://doi.org/10.1063/1.5039448.   DOI
10 J. Krimmer, D. Dauvergne, J.M. Letang, Testa, Prompt-gamma monitoring in hadrontherapy: a review, Nucl. Instr. Meth. Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 878 (2018) 58-73, https://doi.org/10.1016/j.nima.2017.07.063.   DOI
11 A.C. Knopf, A. Lomax, In vivo proton range verification: a review, Phys. Med. Biol. 58 (2013) 131-160, https://doi.org/10.1088/0031-9155/58/15/R131.   DOI
12 C.H. Min, H.R. Lee, C.H. Kim, S.B. Lee, Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy, Med. Phys. 39 (2012) 2100-2107, https://doi.org/10.1118/1.3694098.   DOI
13 F. Stichelbaut, Y. Jongen, Verification of the proton beam position in the patient by the detection of prompt gamma rays emission, in: 39th Meet. Part. Ther. Co-op. Gr. (San Fr, 2003, pp. 1-5.
14 I. Perali, A. Celani, L. Bombelli, C. Fiorini, F. Camera, E. Clementel, S. Henrotin, G. Janssens, D. Prieels, F. Roellinghoff, J. Smeets, F. Stichelbaut, F. Vander Stappen, Prompt gamma imaging of proton pencil beams at clinical dose rate, Phys. Med. Biol. 59 (2014) 5849-5871, https://doi.org/10.1088/0031-9155/59/19/5849.   DOI
15 C.H. Min, C.H. Kim, M.Y. Youn, J.W. Kim, Prompt gamma measurements for locating the dose falloff region in the proton therapy, Appl. Phys. Lett. 89 (2006) 2-5, https://doi.org/10.1063/1.2378561.   DOI
16 Y. Xie, E.H. Bentefour, G. Janssens, J. Smeets, F. Vander Stappen, L. Hotoiu, L. Yin, D. Dolney, S. Avery, F. O'Grady, D. Prieels, J. McDonough, T.D. Solberg, R.A. Lustig, A. Lin, B.K.K. Teo, Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy, Int. J. Radiat. Oncol. Biol. Phys. 99 (2017) 210-218, https://doi.org/10.1016/j.ijrobp.2017.04.027.   DOI
17 S.H. Kim, J.H. Jeong, Y. Ku, J. Jung, S. Cho, K. Jo, C.H. Kim, Upgrade of gamma electron vertex imaging system for high-performance range verification in pencil beam scanning proton therapy, Nucl. Eng. Technol. (2021), https://doi.org/10.1016/j.net.2021.09.001.   DOI
18 D.R. White, J. Booz, R. V Griffith, J.J. Spokas, I.J. Wilson, ICRU Report 44: tissue substitutes in radiation dosimetry and measurement, J. Int. Comm. Radiat. Units Meas. 23 (1989).
19 J.H. Park, S.H. Kim, Y. Ku, C.H. Kim, H.R. Lee, J.H. Jeong, S.B. Lee, D.H. Shin, Multi-slit prompt-gamma camera for locating of distal dose falloff in proton therapy, Nucl. Eng. Technol. 51 (2019) 1406-1416, https://doi.org/10.1016/j.net.2019.03.008.   DOI
20 H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Phys. Med. Biol. 57 (2012), https://doi.org/10.1088/0031-9155/57/11/R99.   DOI
21 Cern, Geant4 Reference Physics Lists, 2013.
22 M. Pinto, D. Dauvergne, N. Freud, J. Krimmer, J.M. Letang, E. Testa, Assessment of Geant4 prompt-gamma emission yields in the context of proton therapy monitoring, Front. Oncol. 6 (2016) 1-7, https://doi.org/10.3389/fonc.2016.00010.   DOI