• Title/Summary/Keyword: Randomly Fiber

Search Result 271, Processing Time 0.026 seconds

Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes

  • Salar Rasti;Hossein Showkati;Borhan Madroumi Aghbashi;Soheil Nejati Ozani;Tadeh Zirakian
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.679-691
    • /
    • 2023
  • The application of short, fiber-reinforced polymer composite pipes has been increasing rapidly. A comprehensive review of the prior research reveals that the majority of the previously-reported studies have been conducted on the filament-wound composite pipes, and fewer studies have been reported on the mechanical behavior of short, randomly-oriented fiber composite pipes. On this basis, the main objective of this research endeavor is to investigate the mechanical behavior and failure modes of short, randomly-oriented glass-fiber composite pipes under three-point bending tests. To this end, an experimental study is performed in order to explore the load-bearing capacity, failure mechanism, and deformation performance of such pipes. Fourteen properly-instrumented composite pipe specimens with different diameters, thicknesses, lengths, and nominal pressures have been tested and also simulated using the finite element approach for verification purposes. This study demonstrates the effectiveness of the diameter-to-thickness ratio, length-to-diameter ratio, and nominal pressure on the mechanical behavior and deformation performance of short, randomly-oriented glass-fiber composite pipes.

Effect of Moisture Absorption on the Compressive and the Bending Residual Strength in Fiber-Reinforced Polymeric Composites (흡습효과가 섬유강화 고분자 복합재료의 압축 ${\cdot}$ 굽힘 잔류강도에 미치는 영향)

  • Kim, Hyuk;Han, Gil-Young;Lee, Dong-Gi;Kim, E-Gon;Kim, Ki-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.133-140
    • /
    • 1995
  • This paper deals with the residual strength characteristics of composite materials under the environment of high temperature and humidity. Two types of GFRP, one with unidirection and randomly oriented, are used to investigate the features of moisture absorption and the residual strength. The results show that, when exposed longterms in high temperature and humidity, the randomly oriented composites is more stable than the unidirection one.

  • PDF

Compensation for the Distorted WDM Channels in the Long-Haul Transmission Link with the Randomly Distributed SMF Lengths and RDPS (SMF 길이와 RDPS가 랜덤하게 분포하는 장거리 전송 링크에서의 왜곡된 WDM 채널의 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.323-329
    • /
    • 2015
  • The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul ($50\;fiber\;spans{\times}80km$) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) for implementing of the flexible link configuration are investigated. It is confirmed that the compensation effect in the link with the randomly distributed SMF length and RDPS is similar with that in the link with the uniform distribution, when the launch power of WDM channels are restricted within 0 dBm. This result means that the proposed link configuration is useful for designing and deploying the long-haul WDM transmission link.

Shear Strength and Permeability Characteristics of Soil Body Reinforced with Linear and Planar Reinforcing Materials (선형보강재와 평면보강재를 적용한 토체의 전단강도 및 투수특성)

  • 차경섭;장병욱;우철웅;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.162-171
    • /
    • 2003
  • Traditional methods of earth reinforcement consist of introducing strips, fabrics, or grids into an earth mass. Recently, discrete fibers are simply added and mixed with the soil, much the same as cement, lime or other additives. The advantages of randomly distributed fibers is the maintenance of strength isotropy, low decrease in post-peak shear strength and high stability at failure. In this study, new composite reinforcement structures which consist of geotextile and randomly distributed discrete fibers were examined their engineering properties, such as shear strength of the composite reinforced soil and permeability of short fiber reinforced soil. The increments of shear strength of composite reinforced soils were the sum of increments by fiber and woven geotextile, respectively. The permeability of short fiber reinforced soil was increased with fiber mixing ratio.

The Influence of Hygrothermal Effect to Residual Strength GFRP Composites (열습효과가 GFRP의 잔류강도에 미치는 영향)

  • 한길영;이동기;김이곤;김기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.57-62
    • /
    • 1995
  • The hygrothermal effect on three different types of Glass/Polypropylene was investigated under the environment of 4$0^{\circ}C$ distilled water. The residual strength of Glass/Polypropylene with randomly oriented and fiber content of 4-wt%(R40) was found stable under the moisture content of 0.2%. In this case, the maximum moisture content was 0.53%. On the other hand, Glass/Polypropylene with unidirection and 42wt%(U42) and 50st%(U50) fiber content, respectively, showed the residual strength less stable than R40. However, the maximam moisture contents were 0.52% and 0.45% respectively.

  • PDF

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

Interfacial Strain Distribution of a Unidirectional Composite with Randomly Distributed Fibers (불규칙 섬유배열을 가진 일방향 복합재료의 경계면 변형률 분포 해석)

  • Ha Sung-Kyu;Jin Kyo-Kook;Oh Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.260-268
    • /
    • 2006
  • The micromechanical approach was used to investigate the interfacial strain distributions of a unidirectional composite under transverse loading in which fibers were usually found to be randomly packed. Representative volume elements (RVE) for the analysis were composed of both regular fiber arrays such as a square array and a hexagonal array, and a random fiber array. The finite element analysis was performed to analyze the normal, tangential and shear strains at the interface. Due to the periodic characteristics of the strain distributions at the interface, the Fourier series approximation with proper coefficients was utilized to evaluate the strain distributions at the interface for the regular and random fiber arrays with respect to fiber volume fractions. From the analysis, it was found that the random arrangement of fibers had a significant influence on the strain distribution at the interface, and the strain distribution in the regular fiber arrays was one of special cases of that in the random fiber array.

Material property of fiber reinforced concrete according to the fiber blended ratio (섬유 혼입 비율에 따른 섬유보강 콘크리트의 재료특성)

  • Park Choon Gun;Kim Nam Hol;Lee Jong Pil;Kim Hag Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.632-635
    • /
    • 2004
  • In this paper, material property of fiber reinforced concrete(FRC) according to the steel fiber, glass fiber and carbon fiber blended ratio. The fiber reinforced concretes are increased mechanical strength, because the fibers are dispersed with randomly direction and disturb crack progression in concretes. Adhesive fracture is occurred slowly at interface between fiber and concrete, and the fracture energy is absorbed due to softening phenomenon.

  • PDF

Shearing Properties of Fiber-Reinforced Soil (섬유혼합 보강토의 전단특성)

  • 조삼덕;김진만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10a
    • /
    • pp.23-28
    • /
    • 1993
  • Shearing properties of soil reinforced with discrete randomly oriented inclusions depend on soil density, particle size, grading, fiber length, tensile strength and stiffness of fiber, mixing ration of fiber, confining stress, etc.. In this paper the effects of those various factors on shear strength of the fiber-reinforced soil was evaluated through triaxial tests and uniaxial tests. Tests were performed on two sandy soils and one silty soil with inclusions in varing lengths, contents and tensile strengths and tested at different confining stresses in triaxial test. From the experimental results, it was investigated if there is an optimal range of fiber lengths and fiber contents for the tested soils.

  • PDF

Dispersion-managed Link Consisted of the Randomly-distributed Optical Fibers Combined with Midway Optical Phase Conjugator (Midway OPC를 갖는 광섬유의 길이가 랜덤하게 분포하는 분산 제어 링크)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.630-632
    • /
    • 2018
  • The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul (50 fiber spans ${\times}$ 80 km) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) for implementing of the flexible link configuration are investigated.

  • PDF