• Title/Summary/Keyword: Random vibration theory

Search Result 78, Processing Time 0.023 seconds

Load Combination Criteria for Dsing of NPP Containment Structures (원자력 차폐구조물의 설계하중 조합 규칙)

  • 한봉구;조효남
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.51-57
    • /
    • 1990
  • The current load combination criteria for design of nuclear power plant structures(NPP) are not based on the probability-based design concept but rely on the conventional design concept. In this paper, a load combination criteria for design of NPP containment structures are proposed based on a FEM-based random vibration analysis. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method, In this paper, the toad factors for the design of NPP structures in Korea are proposed by considering appropriate load combination criteria for design.

  • PDF

Adaptive backstepping control with grey theory for offshore platforms

  • Hung, C.C.;Nguyen, T.
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.159-172
    • /
    • 2022
  • To ensure stable performance, adaptive regulators with new theories are designed for steel-covered offshore platforms to withstand anomalous wave loads. This model shows how to control the vibration of the ocean panel as a solution using new results from Lyapunov's stability criteria, an evolutionary bat algorithm that simplifies computational complexity and utilities. Used to reduce the storage space required for the method. The results show that the proposed operator can effectively compensate for random delays. The results show that the proposed controller can effectively compensate for delays and random anomalies. The improved prediction method means that the vibration of the offshore structure can be significantly reduced. While maintaining the required controllability within the ideal narrow range.

A numerical study on vibration behavior of fiber-reinforced composite panels in thermal environments

  • Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.691-699
    • /
    • 2022
  • This paper is devoted to the presentation of a numerical study on vibration behavior of composite panels reinforced by glass fibres and carbon nanotubes (CNTs) subjected to thermal environments. The effect of temperature variation has been included as thermal load acting on in-plane direction of the panel. To model the composite material, a micromechanical model which contains random dispersion of nanotubes and single-direction fibers has been selected. The geometry of the panel has been considered to have a single curveture along its width. Based on the above assumptions, the governing equations have been derived by using thin shell theory capturing the panel curveture and also nonlinear deflections. Finally, the panel dependence on various factors such as the curveture, nanotube amount, fiber volume, fiber direction and temperature variation has been researched.

Application of Accelerated Vibration Testing to Spot-welding Specimen (점용접 표준시편에 대한 가속내구시험법의 적용)

  • 김관주;조성신;정진성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.209-213
    • /
    • 2003
  • It is advantage of accelerated vibration testing to compress service exposures to operating vibration into a reduced laboratory test by increasing the amplitude or frequency of the applied input excitations. This paper proposes an accelerated test method to estimate the high-cycle fatigue life under random excitation. The method consists of conducting a test with amplified input excitation and extrapolating linearly the lift in the accelerated condition into the real lift in field condition. The extrapolation is carried out applying the high-cycle irregular excitation fatigue theory including the rainflow counting, Miner’s damage accumulation rule, and Goodman’s mean stress correction. As a verification, those estimated lift is compared with that acquired by experiment f3r the simple case of spot welding specimen with good agreement. This testing procedure will provide an useful scheme that can reduce testing period associated with developing time schedule of new product.

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

Optimal design of Base Isolation System considering uncertain bounded system parameters

  • Roy, Bijan Kumar;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.19-37
    • /
    • 2013
  • The optimum design of base isolation system considering model parameter uncertainty is usually performed by using the unconditional response of structure obtained by the total probability theory, as the performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such cases, the interval analysis method is a viable alternative. The present study focuses on the bounded optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by bounded type system parameters. With this intention in view, the conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded optimization procedure and the optimum performance of the isolation system.

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.

Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

  • Kunjie Rong;Xinghua Li;Zheng Lu;Siyuan Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.117-127
    • /
    • 2023
  • To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system's control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

1/4 Car Vibration Simulation Using An Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4차량 진동 시뮬레이션)

  • Baek, Woon-Kyung;Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.638-643
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was dong using a quarter car simulator to confirm the simulation results with the Spencer MR damper model

  • PDF

1/4 Car Vibration Simulation Using an Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4 차량 진동 시뮬레이션)

  • Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won;Baek, Woon-Kyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1016-1022
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was done using a quarter car simulator to confirm the simulation results with the Spencer MR damper model.