• Title/Summary/Keyword: Random pulse width modulation (RPWM)

Search Result 14, Processing Time 0.035 seconds

Reduction of Audible Switching Noise in Induction Motor Drives Using Random Position PWM (Random Position PWM을 이용한 유도전동기의 가청 스위칭 소음 저감)

  • 나석환;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.287-297
    • /
    • 1998
  • RPWM(Random Pulse Width Modulation) is a switching technique to spread the voltage and current harmonics on wide frequency area. Using randomly changed switching frequency of the inverter, the power spectrum of the electromagnetic acoustic noise can be spread into the wide-band area. And the wide-band noise is much more comfortable and less annoying than the narrow-band one. So RPWM have been attracting an interest as an excellent reduction method of acoustic noise on the inverter drive system. In this paper a new RPPWM(Random Position PWM) is proposed and implemented. Each of three pulses is located randomly in each switching intervals. Along with the randomization of PWM pulses, the space vector modulation is processed on the C167 microcontroller also. The experimental results show that the voltage and current harmonics were spread into wide band area and that the audible switching noise was reduced by proposed RPPWM method.

  • PDF

A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage

  • Jarin, T.;Subburaj, P.;Bright, Shibu J V
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2018-2030
    • /
    • 2015
  • A two stage ac drive configuration consisting of a single-phase line commutated rectifier and a three-phase voltage source inverter (VSI) is very common in low and medium power applications. The deterministic pulse width modulation (PWM) methods like sinusoidal PWM (SPWM) could not be considered as an ideal choice for modern drives since they result mechanical vibration and acoustic noise, and limit the application scope. This is due to the incapability of the deterministic PWM strategies in sprawling the harmonic power. The random PWM (RPWM) approaches could solve this issue by creating continuous harmonic profile instead of discrete clusters of dominant harmonics. Insufficient filtering at dc link results in the amplitude distortion of the input dc voltage to the VSI and has the most significant impact on the spectral errors (difference between theoretical and practical spectra). It is obvious that the sprawling effect of RPWM undoubtedly influenced by input fluctuation and the discrete harmonic clusters may reappear. The influence of dc link fluctuation on harmonics and their spreading effect in the VSI remains invalidated. A case study is done with four different filter capacitor values in this paper and results are compared with the constant dc input operation. This paper also proposes an ingenious RPWM, a ripple dosed sinusoidal reference-random carrier PWM (RDSRRCPWM), which has the innate capacity of suppressing the effect of input fluctuation in the output than the other modern PWM methods. MATLAB based simulation study reveals the fundamental component, total harmonic distortion (THD) and harmonic spread factor (HSF) for various modulation indices. The non-ideal dc link is managed well with the developed RDSRRCPWM applied to the VSI and tested in a proto type VSI using the field programmable gate array (FPGA).

Reducing Noise Source Harmonics of the Next-Generation High-Speed Railway Inverter System Using Hybrid RPWM Technique (Hybrid RPWM을 적용한 IPMSM 기반 차세대 고속전철 인버터 구동 시스템의 소음원 고조파 저감)

  • Lee, Sang-Hyun;Jin, Kang-Hwan;Kim, Sung-Je;Park, Young-Ho;Kim, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1061-1068
    • /
    • 2012
  • In this paper, The Next Generation High Speed Railway inverter system using Hybrid Random Pulse Width Modulation (Hybrid RPWM) is proposed to reduce electromagnetic noise. To verify the validity of study, simulation results of the Next Generation High Speed Railway Inverter system using the proposed method was compared with the system using conventional method. A simulation program is developed using Matlab/Simulink. The results show that the voltage and current harmonics of the Next Generation High Speed Railway Inverter system using Hybrid RPWM significantly decrease and spread into wide band area.

A New Random PWM Technique for Conducted-EMI Mitigation on Cuk Converter

  • Krishnakumar, C.;Muhilan, P.;Sathiskumar, M.;Sakthivel, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.916-924
    • /
    • 2015
  • Electromagnetic Interference (EMI) is a system to system or environment to system phenomenon. The literature survey proved that the Randomized Pulse Width Modulation (RPWM) technique is a promising technique to reduce EMI. A new Constant Trailing Edge, Randomized Pulse Width Modulation (CTERPWM) technique is proposed in this paper. The effect of the proposed RPWM technique for mitigation of conducted-EMI on Cuk converter operating in Continuous Conduction Mode (CCM) is simulated and tested. In this paper, the analytical expressions for the Power Spectral Density (PSD) are derived for the proposed RPWM technique and are validated by experimental measurements. The effectiveness of the proposed RPWM technique on the mitigation of conducted-EMI is verified comparing simulation and experimental results and it is identified that both the results are almost similar with allowable experimental deviations. The comparative investigation proves that the proposed RPWM technique can mitigate and spread the dominant peaks of conducted-EMI over the complete spectrum for the Cuk converter. Based on the investigation the CTERPWM technique is recommended for adoption.

A Real-Time RPWM Inverter for Reduction of Switching Frequency Band Noise in the Induction Motor (유도전동기의 스위칭 주파수대 소음 저감을 위한 실시간 RPWM 인버터)

  • 나석환;최창률;양승학;김광헌;임영철;박종건
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.64-73
    • /
    • 1997
  • RPWM(Random Pulse Width Modulation) techniques have been attracting an interest as an excellent reduction method of acoustic noise on the inverter drive system. Using randomly changed switching fre-quency of the inverter, the power spectrum of the electromagnetic acoustic noise can be spread out into the wide-band area. The wide band noise is much more comfortable and less annoying than the narrow-band one. This paper describes an implementationof the triangular carrier frequency modultde RPWM inverter drive system The poweer soedtrum of the noise emittde from the induction motro was measured in the anechoic chamber. The analysis of the sources for the acoustic noise and the effects of the noise reduction are confirmed by the ceasured dpectra of the noise. Real-time RPWM along with the speed control was achieved by high speed DSP(Digital Signal Processor ) TmS320C31, By changing the center frequency and the bandwidth of the carrier, theis real-time RPWM scheme can be used as an efficient switching frequency band acoustic noise reduction method for the inverter system with variant load conditions.

  • PDF

Conducted Noise Reduction in Active clamp ZVS flyback converter using Random Pulse Width Modulation (RPWM 기법을 이용한 능동클램프 ZVS 플라이백 컨버터 전도노이즈저감)

  • Kim Young-Gyu;Choi Tae-Young;Won Chung-Yuen;Kim Jae-Moon;Kim Gyu-Sik;Choi Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.498-501
    • /
    • 2002
  • In the conventional PWM converter, high-frequency switching techniques was used for high-density of energy, but occurred a lot of problems such as switching losses, switching voltage/current stresses, EMI(Electromgnetic Interference) and so on. To overcome these problems, various soft switching techniques have been presented. However these techniques are focused on reducing switching losses and voltage/current stresses . The simulation and experimental results are shown that the active clamp ZVS flyback converter with the proposed RPWM(Random Pulse Width Modulation) technique reduces the conducted noise.

  • PDF

Real Time RPWM Drive System by Carrier Frequency Modulation Technique (캐리어 주파수 변조에 의한 실시간 RPWM 구동장치)

  • Na, S.H.;Choi, C.R.;Yang, S.H.;Lim, Y.C.;Kim, K.H.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2058-2061
    • /
    • 1997
  • A main research topic in PWM inverter drive system is to reduce the generated acoustic noise. One method to reduce the acoustic noise is to cause the switching pattern to be random. This RPWM(Random Pulse Width Modulation) technique for voltage controlled inverters is a kind of good solutions for reduction of acoustic noise and suppression of vibration. This paper describes a carrier frequency modulated real-time RPWM inverter. Changing the carrier frequency randomly, the power spectrum of tile acoustic noise was spread over the wide-band area. And experimental results showed that emitted noise is much more comportable and less annoying

  • PDF

REDUCTION OF AUDIBLE SWITCHING NOISE IN INDUCTION MOTOR DRIVES USING RANDOM POSITION PWM

  • Na, Seok-Hwan;Wi, Seok-Oh;Lim, Young-Cheol;Yang, Seung-Hak
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.316-319
    • /
    • 1998
  • RPWM(Random Pulse Width Modulation) is a switching technique to spread the voltage and current harmonics on the wide frequency area. Using randomly changed switching frequency of the inverter, the power spectrum of the electromagnetic acoustic noise cab be spread to the wide-band area. The wide-band noise is much more comfortable and less annoying than the narrow-band one. So RPWM have been attracting an interest as an excellent method for the reduction of acoustic noise on the inverter drive system. In this paper a new RPPWM (Random Position PWM) is proposed and implemented. Each of three pulses is located randomly in each switching interval. Along with the randomization of PWM pulses, the space vector modulation is executed in the C167 microcontroller also. The experimental results show that the voltage and current harmonics were spread to wide band area and that the audible switching noise was reduced by proposed RPPWM method.

  • PDF

A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation (Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구)

  • Jung, Dong-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

Acoustic Noise & Vibration Reduction of Induction Motor Drive System for Washing Machine Using RPWM Technique (RPWM기법을 이용한 세탁기용 유도전동기 구동 시스템의 소음 및 진동 저감)

  • Lee, Won-Chul;Kim, Lee-Hun;Bae, Woo-Ri;Jang, Bong-An;Yang, Ha-Yeong;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.17-26
    • /
    • 2005
  • The random pulse width modulation(RPWM) in inverter-fed induction motor drive is presented. This paper describes a RPWM method based on space vector PWM strategy for shaping the switching noise spectrum in such a way it can merge with the natural system noise. To verify the validity of the proposed RPWM scheme, the experiment based on the DSP56F803 microprocessor was executed finally, the simulation and experimental results will be given to demonstrate the effectiveness of the unposed RPWM scheme.