• Title/Summary/Keyword: Random model

Search Result 3,737, Processing Time 0.086 seconds

Meta-Analysis of ESD Program Studies in Home Economics Classes (가정과수업에서 ESD 프로그램 연구의 메타분석)

  • Yu, Nan Sook;Park, Mi Jeong
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.3
    • /
    • pp.97-116
    • /
    • 2023
  • This study conducted a meta-analysis on the effectiveness of education for sustainable development (ESD) programs within home economics classes. Articles spanning from 2000 to April 2023 were sourced from the Korean Citation Index (KCI) using search terms such as 'environment', 'sustainable', 'ESD', 'green', 'ecology', and 'home economics' in conjunction with 'development', 'application', and 'effectiveness'. Out of the gathered articles, 41 were chosen for analysis. Using a random effects model, the overall effect size was measured at 0.51 (SE=.08), suggesting that ESD programs significantly enhance student achievement in home economics. Further analysis of the 62 effect sizes, categorized by research design, ESD area (society, environment, economy), content area, school level, and school location, revealed that the research design, content area, and school location functioned as moderating variables. The findings of this meta-analysis underscore the efficacy of ESD in home economics education. Additionally, this study paves the way for future research, highlighting the importance of integrating economic perspectives in ESD, such as sustainable production and consumption, corporate sustainability, and market economy within home economics classes.

Discussion on Detection of Sediment Moisture Content at Different Altitudes Employing UAV Hyperspectral Images (무인항공 초분광 영상을 기반으로 한 고도에 따른 퇴적물 함수율 탐지 고찰)

  • Kyoungeun Lee;Jaehyung Yu;Chanhyeok Park;Trung Hieu Pham
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.353-362
    • /
    • 2024
  • This study examined the spectral characteristics of sediments according to moisture content using an unmanned aerial vehicle (UAV)-based hyperspectral sensor and evaluated the efficiency of moisture content detection at different flight altitudes. For this purpose, hyperspectral images in the 400-1000nm wavelength range were acquired and analyzed at altitudes of 40m and 80m for sediment samples with various moisture contents. The reflectance of the sediments generally showed a decreasing trend as the moisture content increased. Correlation analysis between moisture content and reflectance showed a strong negative correlation (r < -0.8) across the entire 400-900nm range. The moisture content detection model constructed using the Random Forest technique showed detection accuracies of RMSE 2.6%, R2 0.92 at 40m altitude and RMSE 2.2%, R2 0.95 at 80m altitude, confirming that the difference in accuracy between altitudes was minimal. Variable importance analysis revealed that the 600-700nm band played a crucial role in moisture content detection. This study is expected to be utilized in efficient sediment moisture management and natural disaster prediction in the field of environmental monitoring in the future.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

The Relations between Financial Constraints and Dividend Smoothing of Innovative Small and Medium Sized Enterprises (혁신형 중소기업의 재무적 제약과 배당스무딩간의 관계)

  • Shin, Min-Shik;Kim, Soo-Eun
    • Korean small business review
    • /
    • v.31 no.4
    • /
    • pp.67-93
    • /
    • 2009
  • The purpose of this paper is to explore the relations between financial constraints and dividend smoothing of innovative small and medium sized enterprises(SMEs) listed on Korea Securities Market and Kosdaq Market of Korea Exchange. The innovative SMEs is defined as the firms with high level of R&D intensity which is measured by (R&D investment/total sales) ratio, according to Chauvin and Hirschey (1993). The R&D investment plays an important role as the innovative driver that can increase the future growth opportunity and profitability of the firms. Therefore, the R&D investment have large, positive, and consistent influences on the market value of the firm. In this point of view, we expect that the innovative SMEs can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. And also, we expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Aivazian et al.(2006) exert that the financial unconstrained firms with the high accessibility to capital market can adjust dividend payment faster than the financial constrained firms. We collect the sample firms among the total SMEs listed on Korea Securities Market and Kosdaq Market of Korea Exchange during the periods from January 1999 to December 2007 from the KIS Value Library database. The total number of firm-year observations of the total sample firms throughout the entire period is 5,544, the number of firm-year observations of the dividend firms is 2,919, and the number of firm-year observations of the non-dividend firms is 2,625. About 53%(or 2,919) of these total 5,544 observations involve firms that make a dividend payment. The dividend firms are divided into two groups according to the R&D intensity, such as the innovative SMEs with larger than median of R&D intensity and the noninnovative SMEs with smaller than median of R&D intensity. The number of firm-year observations of the innovative SMEs is 1,506, and the number of firm-year observations of the noninnovative SMEs is 1,413. Furthermore, the innovative SMEs are divided into two groups according to level of financial constraints, such as the financial unconstrained firms and the financial constrained firms. The number of firm-year observations of the former is 894, and the number of firm-year observations of the latter is 612. Although all available firm-year observations of the dividend firms are collected, deletions are made in the case of financial industries such as banks, securities company, insurance company, and other financial services company, because their capital structure and business style are widely different from the general manufacturing firms. The stock repurchase was involved in dividend payment because Grullon and Michaely (2002) examined the substitution hypothesis between dividends and stock repurchases. However, our data structure is an unbalanced panel data since there is no requirement that the firm-year observations data are all available for each firms during the entire periods from January 1999 to December 2007 from the KIS Value Library database. We firstly estimate the classic Lintner(1956) dividend adjustment model, where the decision to smooth dividend or to adopt a residual dividend policy depends on financial constraints measured by market accessibility. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between current payout rato and target payout ratio each year. In the Lintner model, dependent variable is the current dividend per share(DPSt), and independent variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt). We hypothesized that firms adjust partially the gap between the current dividend per share(DPSt) and the target payout ratio(Ω) each year, when the past dividend per share(DPSt-1) deviate from the target payout ratio(Ω). We secondly estimate the expansion model that extend the Lintner model by including the determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory. In the expansion model, dependent variable is the current dividend per share(DPSt), explanatory variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt), and control variables are the current capital expenditure ratio(CEAt), the current leverage ratio(LEVt), the current operating return on assets(ROAt), the current business risk(RISKt), the current trading volume turnover ratio(TURNt), and the current dividend premium(DPREMt). In these control variables, CEAt, LEVt, and ROAt are the determinants suggested by the residual dividend theory and the agency theory, ROAt and RISKt are the determinants suggested by the dividend signaling theory, TURNt is the determinant suggested by the transactions cost theory, and DPREMt is the determinant suggested by the catering theory. Furthermore, we thirdly estimate the Lintner model and the expansion model by using the panel data of the financial unconstrained firms and the financial constrained firms, that are divided into two groups according to level of financial constraints. We expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, because the former can finance more easily the investment funds through the market accessibility than the latter. We analyzed descriptive statistics such as mean, standard deviation, and median to delete the outliers from the panel data, conducted one way analysis of variance to check up the industry-specfic effects, and conducted difference test of firms characteristic variables between innovative SMEs and noninnovative SMEs as well as difference test of firms characteristic variables between financial unconstrained firms and financial constrained firms. We also conducted the correlation analysis and the variance inflation factors analysis to detect any multicollinearity among the independent variables. Both of the correlation coefficients and the variance inflation factors are roughly low to the extent that may be ignored the multicollinearity among the independent variables. Furthermore, we estimate both of the Lintner model and the expansion model using the panel regression analysis. We firstly test the time-specific effects and the firm-specific effects may be involved in our panel data through the Lagrange multiplier test that was proposed by Breusch and Pagan(1980), and secondly conduct Hausman test to prove that fixed effect model is fitter with our panel data than the random effect model. The main results of this study can be summarized as follows. The determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory explain significantly the dividend policy of the innovative SMEs. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between the current payout ratio and the target payout ratio each year. In the core variables of Lintner model, the past dividend per share has more effects to dividend smoothing than the current earnings per share. These results suggest that the innovative SMEs maintain stable and long run dividend policy which sustains the past dividend per share level without corporate special reasons. The main results show that dividend adjustment speed of the innovative SMEs is faster than that of the noninnovative SMEs. This means that the innovative SMEs with high level of R&D intensity can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. The other main results show that dividend adjustment speed of the financial unconstrained SMEs is faster than that of the financial constrained SMEs. This means that the financial unconstrained firms with high accessibility to capital market can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Futhermore, the other additional results show that dividend adjustment speed of the innovative SMEs classified by the Small and Medium Business Administration is faster than that of the unclassified SMEs. They are linked with various financial policies and services such as credit guaranteed service, policy fund for SMEs, venture investment fund, insurance program, and so on. In conclusion, the past dividend per share and the current earnings per share suggested by the Lintner model explain mainly dividend adjustment speed of the innovative SMEs, and also the financial constraints explain partially. Therefore, if managers can properly understand of the relations between financial constraints and dividend smoothing of innovative SMEs, they can maintain stable and long run dividend policy of the innovative SMEs through dividend smoothing. These are encouraging results for Korea government, that is, the Small and Medium Business Administration as it has implemented many policies to commit to the innovative SMEs. This paper may have a few limitations because it may be only early study about the relations between financial constraints and dividend smoothing of the innovative SMEs. Specifically, this paper may not adequately capture all of the subtle features of the innovative SMEs and the financial unconstrained SMEs. Therefore, we think that it is necessary to expand sample firms and control variables, and use more elaborate analysis methods in the future studies.

Service Quality, Customer Satisfaction and Customer Loyalty of Mobile Communication Industry in China (중국이동통신산업중적복무질량(中国移动通信产业中的服务质量), 고객만의도화고객충성도(顾客满意度和顾客忠诚度))

  • Zhang, Ruijin;Li, Xiangyang;Zhang, Yunchang
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.269-277
    • /
    • 2010
  • Previous studies have shown that the most important factor affecting customer loyalty in the service industry is service quality. However, on the subject of whether service quality has a direct or indirect effect on customer loyalty, scholars' views apparently vary. Some studies suggest that service quality has a direct and fundamental influence on customer loyalty (Bai and Liu, 2002). However, others have shown that service quality not only directly affects customer loyalty, it also has an indirect impact on customer loyalty by influencing customer satisfaction and perceived value (Cronin, Brady, and Hult, 2000). Currently, there are few domestic articles that specifically address the relationship between service quality and customer loyalty in the mobile communication industry. Moreover, research has studied customer loyalty as a whole variable, rather than breaking it down further into multiple dimensions. Based on this analysis, this paper summarizes previous study results, establishes an effect mechanism model among service quality, customer satisfaction, and customer loyalty in the mobile communication industry, and presents a statistical test on model assumptions by using customer investigation data from Heilongjiang Mobile Company. It provides theoretical guidance for mobile service management based on the discussion of the hypothesis test results. For data collection, the sample comprised mobile users in Harbin city, and the survey was taken by random sampling. Out of a total of 300 questionnaires, 276 (92.9%) were recovered. After excluding invalid questionnaires, 249 remained, for an effective rate of 82.6 percent for the study. Cronbach's ${\alpha}$ coefficient was adapted to assess the scale reliability, and validity testing was conducted on the questionnaire from three aspects: content validity, construct validity. and convergent validity. The study tested for goodness of fit mainly from the absolute and relative fit indexes. From the hypothesis testing results, overall, four assumptions have not been supported. The ultimate affective relationship of service quality, customer satisfaction, and customer loyalty is demonstrated in Figure 2. On the whole, the service quality of the communication industry not only has a direct positive significant effect on customer loyalty, it also has an indirect positive significant effect on customer loyalty through service quality; the affective mechanism and extent of customer loyalty are different, and are influenced by each dimension of service quality. This study used the questionnaires of existing literature from home and abroad and tested them in empirical research, with all questions adapted to seven-point Likert scales. With the SERVQUAL scale of Parasuraman, Zeithaml, and Berry (1988), or PZB, as a reference point, service quality was divided into five dimensions-tangibility, reliability, responsiveness, assurance, and empathy-and the questions were simplified down to nineteen. The measurement of customer satisfaction was based mainly on Fornell (1992) and Wang and Han (2003), ending up with four questions. Based on the study’s three indicators of price tolerance, first choice, and complaint reaction were used to measure attitudinal loyalty, while repurchase intention, recommendation, and reputation measured behavioral loyalty. The collection and collation of literature data produced a model of the relationship among service quality, customer satisfaction, and customer loyalty in mobile communications, and China Mobile in the city of Harbin in Heilongjiang province was used for conducting an empirical test of the model and obtaining some useful conclusions. First, service quality in mobile communication is formed by the five factors mentioned earlier: tangibility, reliability, responsiveness, assurance, and empathy. On the basis of PZB SERVQUAL, the study designed a measurement scale of service quality for the mobile communications industry, and obtained these five factors through exploratory factor analysis. The factors fit basically with the five elements, indicating the concept of five elements of service quality for the mobile communications industry. Second, service quality in mobile communications has both direct and indirect positive effects on attitudinal loyalty, with the indirect effect being produced through the intermediary variable, customer satisfaction. There are also both direct and indirect positive effects on behavioral loyalty, with the indirect effect produced through two intermediary variables: customer satisfaction and attitudinal loyalty. This shows that better service quality and higher customer satisfaction will activate the attitudinal to service providers more active and show loyalty to service providers much easier. In addition, the effect mechanism of all dimensions of service quality on all dimensions of customer loyalty is different. Third, customer satisfaction plays a significant intermediary role among service quality and attitudinal and behavioral loyalty, indicating that improving service quality can boost customer satisfaction and make it easier for satisfied customers to become loyal customers. Moreover, attitudinal loyalty plays a significant intermediary role between service quality and behavioral loyalty, indicating that only attitudinally and behaviorally loyal customers are truly loyal customers. The research conclusions have some indications for Chinese telecom operators and others to upgrade their service quality. Two limitations to the study are also mentioned. First, all data were collected in the Heilongjiang area, so there might be a common method bias that skews the results. Second, the discussion addresses the relationship between service quality and customer loyalty, setting customer satisfaction as mediator, but does not consider other factors, like customer value and consumer features, This research will be continued in the future.

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

Multi-level Analysis of the Antecedents of Knowledge Transfer: Integration of Social Capital Theory and Social Network Theory (지식이전 선행요인에 관한 다차원 분석: 사회적 자본 이론과 사회연결망 이론의 결합)

  • Kang, Minhyung;Hau, Yong Sauk
    • Asia pacific journal of information systems
    • /
    • v.22 no.3
    • /
    • pp.75-97
    • /
    • 2012
  • Knowledge residing in the heads of employees has always been regarded as one of the most critical resources within a firm. However, many tries to facilitate knowledge transfer among employees has been unsuccessful because of the motivational and cognitive problems between the knowledge source and the recipient. Social capital, which is defined as "the sum of the actual and potential resources embedded within, available through, derived from the network of relationships possessed by an individual or social unit [Nahapiet and Ghoshal, 1998]," is suggested to resolve these motivational and cognitive problems of knowledge transfer. In Social capital theory, there are two research streams. One insists that social capital strengthens group solidarity and brings up cooperative behaviors among group members, such as voluntary help to colleagues. Therefore, social capital can motivate an expert to transfer his/her knowledge to a colleague in need without any direct reward. The other stream insists that social capital provides an access to various resources that the owner of social capital doesn't possess directly. In knowledge transfer context, an employee with social capital can access and learn much knowledge from his/her colleagues. Therefore, social capital provides benefits to both the knowledge source and the recipient in different ways. However, prior research on knowledge transfer and social capital is mostly limited to either of the research stream of social capital and covered only the knowledge source's or the knowledge recipient's perspective. Social network theory which focuses on the structural dimension of social capital provides clear explanation about the in-depth mechanisms of social capital's two different benefits. 'Strong tie' builds up identification, trust, and emotional attachment between the knowledge source and the recipient; therefore, it motivates the knowledge source to transfer his/her knowledge to the recipient. On the other hand, 'weak tie' easily expands to 'diverse' knowledge sources because it does not take much effort to manage. Therefore, the real value of 'weak tie' comes from the 'diverse network structure,' not the 'weak tie' itself. It implies that the two different perspectives on strength of ties can co-exist. For example, an extroverted employee can manage many 'strong' ties with 'various' colleagues. In this regards, the individual-level structure of one's relationships as well as the dyadic-level relationship should be considered together to provide a holistic view of social capital. In addition, interaction effect between individual-level characteristics and dyadic-level characteristics can be examined, too. Based on these arguments, this study has following research questions. (1) How does the social capital of the knowledge source and the recipient influence knowledge transfer respectively? (2) How does the strength of ties between the knowledge source and the recipient influence knowledge transfer? (3) How does the social capital of the knowledge source and the recipient influence the effect of the strength of ties between the knowledge source and the recipient on knowledge transfer? Based on Social capital theory and Social network theory, a multi-level research model is developed to consider both the individual-level social capital of the knowledge source and the recipient and the dyadic-level strength of relationship between the knowledge source and the recipient. 'Cross-classified random effect model,' one of the multi-level analysis methods, is adopted to analyze the survey responses from 337 R&D employees. The results of analysis provide several findings. First, among three dimensions of the knowledge source's social capital, network centrality (i.e., structural dimension) shows the significant direct effect on knowledge transfer. On the other hand, the knowledge recipient's network centrality is not influential. Instead, it strengthens the influence of the strength of ties between the knowledge source and the recipient on knowledge transfer. It means that the knowledge source's network centrality does not directly increase knowledge transfer. Instead, by providing access to various knowledge sources, the network centrality provides only the context where the strong tie between the knowledge source and the recipient leads to effective knowledge transfer. In short, network centrality has indirect effect on knowledge transfer from the knowledge recipient's perspective, while it has direct effect from the knowledge source's perspective. This is the most important contribution of this research. In addition, contrary to the research hypothesis, company tenure of the knowledge recipient negatively influences knowledge transfer. It means that experienced employees do not look for new knowledge and stick to their own knowledge. This is also an interesting result. One of the possible reasons is the hierarchical culture of Korea, such as a fear of losing face in front of subordinates. In a research methodology perspective, multi-level analysis adopted in this study seems to be very promising in management research area which has a multi-level data structure, such as employee-team-department-company. In addition, social network analysis is also a promising research approach with an exploding availability of online social network data.

  • PDF

A Meta-analysis of Ambient Air Pollution in Relation to Daily Mortality in Seoul, $1991\sim1995$ (메타분석 방법을 적용한 서울시 대기오염과 조기사망의 상관성 연구 (1991년$\sim$1995년))

  • Dockery, Douglas W.;Kim, Chun-Bae;Jee, Sun-Ha;Chung, Yong;Lee, Jong-Tae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • Objectives: To reexamine the association between air pollution and daily mortality in Seoul, Korea using a method of meta-analysis with the data filed for 1991 through 1995. Methods: A separate Poisson regression analysis on each district within the metropolitan area of Seoul was conducted to regress daily death counts on levels of each ambient air pollutant, such as total suspended particulates (TSP), sulfur dioxide $(SO_2)$, and ozone $(O_3)$, controlling for variability in the weather condition. We calculated a weighted mean as a meta-analysis summary of the estimates and its standard error. Results: We found that the p value from each pollutant model to test the homogeneity assumption was small (p<0.01) because of the large disparity among district-specific estimates. Therefore, all results reported here were estimated from the random effect model. Using the weighted mean that we calculated, the mortality at a $100{\mu}g/m^3$ increment in a 3-day moving average of TSP levels was 1.034 (95% Cl 1.009-1.059). The mortality was estimated to increase 6% (95% Cl 3-10%) and 3% (95% Cl 0-6%) with each 50 ppb increase for 9-day moving average of SO2 and 1-hr maximum O3, respectively. Conclusions: Like most of air pollution epidemiologic studies, this meta-analysis cannot avoid fleeing from measurement misclassification since no personal measurement was taken. However, we can expect that a measurement bias be reduced in a district-specific estimate since a monitoring station is hefter representative cf air quality of the matched district. The similar results to those from the previous studios indicated existence of health effect of air pollution at current levels in many industrialized countries, including Korea.

  • PDF

Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature (온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구)

  • Jin, Seunghee;Jang, Heewon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.253-266
    • /
    • 2018
  • This paper proposes a methodology applying sequence tagging methodology to improve the performance of NER(Named Entity Recognition) used in QA system. In order to retrieve the correct answers stored in the database, it is necessary to switch the user's query into a language of the database such as SQL(Structured Query Language). Then, the computer can recognize the language of the user. This is the process of identifying the class or data name contained in the database. The method of retrieving the words contained in the query in the existing database and recognizing the object does not identify the homophone and the word phrases because it does not consider the context of the user's query. If there are multiple search results, all of them are returned as a result, so there can be many interpretations on the query and the time complexity for the calculation becomes large. To overcome these, this study aims to solve this problem by reflecting the contextual meaning of the query using Bidirectional LSTM-CRF. Also we tried to solve the disadvantages of the neural network model which can't identify the untrained words by using ontology knowledge based feature. Experiments were conducted on the ontology knowledge base of music domain and the performance was evaluated. In order to accurately evaluate the performance of the L-Bidirectional LSTM-CRF proposed in this study, we experimented with converting the words included in the learned query into untrained words in order to test whether the words were included in the database but correctly identified the untrained words. As a result, it was possible to recognize objects considering the context and can recognize the untrained words without re-training the L-Bidirectional LSTM-CRF mode, and it is confirmed that the performance of the object recognition as a whole is improved.