• Title/Summary/Keyword: Random copolymer

Search Result 73, Processing Time 0.02 seconds

Synthesis of Naphthalimidopropyl Acrylate and GMA Copolymers and Their Physical Properties (나프탈이미도프로필 아크릴레이트와 GMA 공중합체의 합성과 물성)

  • Lim, Deok Jum;Oh, Seung Min;Kim, Boo Yoon;Park, Jae Kyung;Kang, Inn-Kyu;Seo, Kwan-Ho;Oh, Dae Hee
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.535-543
    • /
    • 2014
  • This work, which was about the synthesis of naphthalimidopropyl acrylate and GMA copolymers and their physical properties, investigated the compositions of the copolymer, the reactivity ratios of the monomer, resonance effect (Q), polar effect (e) and fluorescence of naphthalene. Azobisisobutyronitronitryl (AIBN) as an initiator was employed at $60^{\circ}C$ with dimethylformamide (DMF) of solvent for the copolymerization of NIPA. $r_1$ was found to be higher than $r_2$ from the reactivity ratios of the monomer obtained from Fineman-Ross (F-R), Kelen-$T{\ddot{u}}d{\ddot{o}}s$(K-T) methods. NIPA was found to be more copolymerized than GMA. $r_1{\cdot}r_2$ product was lower than 1, copolymerization was maked random-alternating type. The fluorescence spectrum of these polymers showed a weak monomer fluorescence band at 380 nm and a strong excimer fluorescence band at about 460 nm. Fluorescence life time of NIPA monomer showed fluorescence cover with UV 355 nm at room temperature, and life time showed $5.1449{\times}10^{-7}s$.

Silica/polymer Nanocomposite Containing High Silica Nanoparticle Content : Change in Proton Conduction and Water Swelling with Surface Property of Silica Nanoparticles (고농도의 Silica Nanoparticle을 함유한 Silica/polymer 나노복합체 : 실리카 표면 특성에 따른 수소이온 전도성 및 수팽윤도 변화)

  • Kim, Ju-Young;Kim, Seung-Jin;Na, Jae-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.514-521
    • /
    • 2010
  • A new one-shot process was employed to fabricate proton exchange membranes (PEMs) over conventional solvent-casting process. Here, PEMs containing nano-dispersed silica nanoparticles were fabricated using one-shot process similar to the bulk-molding compounds (BMC). Different components such as reactive dispersant, urethane acrylate nonionmer (UAN), styrene, styrene sulfuric acid and silica nano particles were dissolved in a single solvent dimethyl sulfoxide (DMSO) followed by copolymerization within a mold in the presence of radical initiator. We have successfully studied the water-swelling and proton conductivity of obtained nanocomposite membranes which are strongly depended on the surface property of dispersed silica nano particles. In case of dispersion of hydrophilic silica nanoparticles, the nanocomposite membranes exhibited an increase in water-swelling and a decrease in methanol permeability with almost unchanged proton conductivity compared to neat polymeric membrane. The reverse observations were achieved for hydrophobic silica nanoparticles. Hence, hydrophilic and hydrophobic silica nanoparticles were effectively dispersed in hydrophilic and hydrophobic medium respectively. Hydrophobic silica nanoparticles dispersed in hydrophobic domains of PEMs largely suppressed swelling of hydrophilic domains by absorbing water without interrupting proton conduction occurred in hydrophilic membrane. Consequently, proton conductivity and water-swelling could be freely controlled by simply dispersing silica nanopartilces within the membrane.

Studies on Ethylene and Styrene Copolymerizations with Dinuclear Constrained Geometry Complexes; Effects of Length of Bridge (두 금속 Constrained Geometry Complexes을 이용한 에틸렌과 스티렌 공중합 연구; 다리결합 길이의 영향)

  • Yoon Keun-Byoung;Bae Sang-Geun;Lee Chul-Woo;Noh Seok-Kyun;Lee Dong-Ho
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.432-436
    • /
    • 2006
  • The new dinuclear CGC (constrained geometry complexes) with indenyl and methyl sub-stituted indenyl and polymethylene bridge have been synthesized, and the copolymerization of ethylene and styrene has been studied in the presence of methylalumionoxane. The activity of 12-methylene and 9-methylene bridged dinuclear CGC were 4 times higher than that of 6-methylene bridged dinucleay CGC. This result might be understood by the implication that the steric effect rather than the electronic effect nay play a major role to direct the polymerization behavior of the dinuclear CGC. The dinuclear CGCs are very efficient to incorporate styrene in backbone. The styrene contents in the formed co-polymers ranged from 6 to 45 mol% according to the polymerization conditions. The melting temperature of copolymers disappeared at high content of styrene (about 11 mol%) There is no styrene-styrene diblock sequence in copolymers. This result Indicates that the dinuclear CGC are very effective to generate random copolymer of ethylene and styrene.