• Title/Summary/Keyword: Random coefficient autoregressive process

Search Result 6, Processing Time 0.016 seconds

A Note on the Strong Mixing Property for a Random Coefficient Autoregressive Process

  • Lee, Sang-Yeol
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.243-248
    • /
    • 1995
  • In this article we show that a class of random coefficient autoregressive processes including the NEAR (New exponential autoregressive) process has the strong mixing property in the sense of Rosenblatt with mixing order decaying to zero. The result can be used to construct model free prediction interval for the future observation in the NEAR processes.

  • PDF

The Mixing Properties of Subdiagonal Bilinear Models

  • Jeon, H.;Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.5
    • /
    • pp.639-645
    • /
    • 2010
  • We consider a subdiagonal bilinear model and give sufficient conditions for the associated Markov chain defined by Pham (1985) to be uniformly ergodic and then obtain the $\beta$-mixing property for the given process. To derive the desired properties, we employ the results of generalized random coefficient autoregressive models generated by a matrix-valued polynomial function and vector-valued polynomial function.

The Asymptotic Variance of the Studentized Residual Autocorrelations for a Generalized Random Coefficient Autoregressive Processes

  • Park, Sang-Woo;Cho, Sin-Sup;Hwang, Sun Y.
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.531-541
    • /
    • 1997
  • The asymptotic distribution of residual autocorrelation functions from a generalized p-order random coefficient autoregressive process (GRCA(p)) is derived. To this end, we first describe the GRCA(p) models and then consider the normalised residuals after fitting the model. This result can be applied to the residual analysis for the diagonostic purpose.

  • PDF

A Unit Root Test Based on Bootstrapping

  • Shin, Key-Il;Kang, Hee-Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.257-265
    • /
    • 1996
  • We consider nonstationary autoregressive autoregressive process with infinite variance of error. In the case of infinite cariance, the limiting distribution of the estimated coefficient is different from that under the finite cariance assumption. In this paper we show that the bootstrap method can be used to approximate the distribution of ordinary least squares estimator of the coefficient in the first order random walk process with infinite variance through some empirical studies and we suggest a test procedure based on bootstrap method for the unit root test.

  • PDF

Recent Review of Nonlinear Conditional Mean and Variance Modeling in Time Series

  • Hwang, S.Y.;Lee, J.A.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.783-791
    • /
    • 2004
  • In this paper we review recent developments in nonlinear time series modeling on both conditional mean and conditional variance. Traditional linear model in conditional mean is referred to as ARMA(autoregressive moving average) process investigated by Box and Jenkins(1976). Nonlinear mean models such as threshold, exponential and random coefficient models are reviewed and their characteristics are explained. In terms of conditional variances, ARCH(autoregressive conditional heteroscedasticity) class is considered as typical linear models. As nonlinear variants of ARCH, diverse nonlinear models appearing in recent literature including threshold ARCH, beta-ARCH and Box-Cox ARCH models are remarked. Also, a class of unified nonlinear models are considered and parameter estimation for that class is briefly discussed.

  • PDF