• Title/Summary/Keyword: Random Projection

Search Result 68, Processing Time 0.022 seconds

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong;Jin, Seung-Seop;Park, Yong-Hwa
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.311-325
    • /
    • 2020
  • In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

Exact Tests for Variance Ratios in Unbalanced Random Effect Linear Models

  • Huh, Moon-Yul;Li, Seung-Chun
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.457-469
    • /
    • 1996
  • In this paper, we propose a method for an exact test of H : $p_i$ = $r_i$ for all i against K : $p_i$ $\neq$ $r_i$ for some i in an unbalanced random effect linear model, where $p_i$ denotes the ratio of the i-th variance component to the error variance. Then we present a method to test H : $p_i$ $\leq$ r against K : $p_i$> r for some specific i by applying orthogonal projection on the model. We also show that any test statistic that follows an F-distribution on the boundary of the hypotheses is equal to the one given here.

  • PDF

A Sanov-Type Proof of the Joint Sufficiency of the Sample Mean and the Sample Variance

  • Kim, Chul-Eung;Park, Byoung-Seon
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.563-568
    • /
    • 1995
  • It is well-known that the sample mean and the sample variance are jointly sufficient under normality assumption. In this paper a proof of the joint sufficiency is given without using the factorization criterion. It is related to a finite Sanov-type conditional theorem, i.e., the conditional probability density of $Y_1$ given sample mean $\mu$ and sample variance $\sigma^2$, where $Y_1, Y_2, \cdots, Y_n$ are independently and identically distributed (i.i.d.) normal random variables with mean m and variance $\delta^2$, equals that of $Y_1$ given sample mean $\mu$ and sample variance $\sigma^2$, where $Y_1, Y_2, \cdots, Y_n$ are i.i.d. normal random variables with mean $\mu$ and variance $\sigma^2$.

  • PDF

Incremental Face Annotation for Open Web Service (개방형 웹 서버스를 위한 증가적 얼굴 어노테이션)

  • Chai, Kwon-Taeg;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.673-682
    • /
    • 2009
  • Recently, photo sharing and publishing based Social Network Sites(SNSs) are increasingly attracting the attention of academic and industry researches. Unlike the face recognition environment addressed by existing works, face annotation problem under SNSs is differentiated in terms of daily updated images database, a limited number of training set and millions of users. Thus, conventional approach may not deal with these problems. In this paper, we proposed a face annotation method for sharing and publishing photographs that contain faces under a social network service using random projection, non-linear regression and representational state transfer. Our experiments on several databases show that the proposed method records an almost constant execution time with comparable accuracy of the PCA-SVM classifier.

Variance Components of Nested Designs (지분계획의 분산성분)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1093-1101
    • /
    • 2015
  • This paper discusses nested design models when nesting occurs in treatment structure and design structure. Some are fixed and others are random; subsequently, the fixed factors having a nested design structure are assumed to be nested in the random factors. The treatment structure can involve random and fixed effects as well as a design structure that can involve several sizes of experimental units. This shows how to use projections for sums of squares by fitting the model in a stepwise procedure. Expectations of sums of squares are obtained via synthesis. Variance components of the nested design model are estimated by the method of moments.

The analysis of random effects model by projections (사영에 의한 확률효과모형의 분석)

  • Choi, Jaesung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.31-39
    • /
    • 2015
  • This paper deals with a method for estimating variance components on the basis of projections under the assumption of random effects model. It discusses how to use projections for getting sums of squares to estimate variance components. The use of projections makes the vector subspace generated by the model matrix to be decomposed into subspaces that are orthogonal each other. To partition the vector space by the model matrix stepwise procedure is used. It is shown that the suggested method is useful for obtaining Type I sum of squares requisite for the ANOVA method.

A panorama image generation method using FAST algorithm (FAST를 이용한 파노라마 영상 생성 방법)

  • Kim, Jong-ho;Ko, Jin-woong;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.630-638
    • /
    • 2016
  • In this paper, a feature based panorama image generation algorithm using FAST(Features from Accelerated Segment Test) method that is faster than SIFT(Scale Invariant Feature Transform) and SURF(Speeded Up Robust Features) is proposed. Cylindrical projection is performed to generate natural panorama images with numerous images as input. The occurred error can be minimized by applying RANSAC(Random Sample Consensus) for the matching process. When we synthesize numerous images acquired from different camera angles, we use blending techniques to compensate the distortions by the heterogeneity of border line. In that way, we could get more natural synthesized panorama image. The proposed algorithm can generate natural panorama images regardless the order of input images and tilted images. In addition, the image matching can be faster than the conventional method. As a result of the experiments, distortion was corrected and natural panorama image was generated.

Image Completion using Belief Propagation Based on Planar Priorities

  • Xiao, Mang;Li, Guangyao;Jiang, Yinyu;Xie, Li;He, Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4405-4418
    • /
    • 2016
  • Automatic image completion techniques have difficulty processing images in which the target region has multiple planes or is non-facade. Here, we propose a new image completion method that uses belief propagation based on planar priorities. We first calculate planar information, which includes planar projection parameters, plane segments, and repetitive regularity extractions within the plane. Next, we convert this planar information into planar guide knowledge using the prior probabilities of patch transforms and offsets. Using the energy of the discrete Markov Random Field (MRF), we then define an objective function for image completion that uses the planar guide knowledge. Finally, in order to effectively optimize the MRF, we propose a new optimization scheme, termed Planar Priority-belief propagation that includes message-scheduling-based planar priority and dynamic label cropping. The results of experiment show that our approach exhibits advanced performance compared with existing approaches.

An Analysis of Panel Attrition in GOMS(Graduates Occupational Survey) (대졸자 직업이동 경로조사에서 패널탈락분석)

  • Chun, Young-Min;Yoon, Jeong-Hye;Oh, Min-Hong
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.981-993
    • /
    • 2009
  • It would cause a serious problem in the panel data when panel attrition is concentrated on certain socioeconomic groups. Using the GOMS, this study investigates whether there exists non-random attrition bias in the data and seeks for feasible solutions to minimize the bias. The results of logit analyses show that panel attrition in the GOMS results mainly from surveying system but not from the surveyed. Therefore, the result suggests to develop well-organized management skill and systems as well as to construct weighting methods.

Metamodeling of nonlinear structural systems with parametric uncertainty subject to stochastic dynamic excitation

  • Spiridonakos, Minas D.;Chatzia, Eleni N.
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.915-934
    • /
    • 2015
  • Within the context of Structural Health Monitoring (SHM), it is often the case that structural systems are described by uncertainty, both with respect to their parameters and the characteristics of the input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a fast and reliable computation of structural response while taking these uncertainties into account. In this work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear structural systems subjected to earthquake excitation. The introduced metamodeling method is based on Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics, which are moreover characterized by random parameters utilized for the description of the uncertainty propagation. These random parameters, which include characteristics of the input excitation, are expanded onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation is fully described through a small number of deterministic coefficients of projection. The effectiveness of the proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed linear elastic region. The added contribution of the introduced scheme is the ability of the proposed methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast reduction of the required computational toll.