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Abstract

In this paper, we propose a method for an exact test of H : p; = r;
for all 7 against K : p; # r; for some 7 in an unbalanced random effect
linear model, where p; denotes the ratio of the ¢-th variance component
to the error variance. Then we present a method to test H : p; < 7
against K : p; > r for some specific ¢ by applying orthogonal projection
on the model. We also show that any test statistic that follows an F—
distribution on the boundary of the hypotheses is equal to the one
given here.

Key Words : Exact variance ratio test; MINQUE; Wald’s test.

1. INTRODUCTION

When the design is unbalanced, it is well known that AOV(Analysis of
Variance) procedure fails to decompose the total sum of squares into inde-
pendently distributed sums of squares. Hence the AOV procedure can not
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be directly applied to the problem of hypothesis testing on variance compo-
nents of a linear model. Many authors have attempted to obtain alternative
procedures for the problem. One of the classical approaches is employing
Satterthwaite’s argument to obtain an approximate test. However in some
cases the nominal significance level of an approximate test is highly unreliable
(see, e.g., Khuri and Little 1987; Kleffe and Seifert 1988). Thus an exact test
procedure is desirable.

Wald (1940, 1941, 1947) constructed an exact confidence interval for vari-
ance ratio, which is closely related to the testing problem. After Wald, many
researchers derived exact tests on null variance components in specific mod-
els; see, for example, Spjgtvoll (1967, 1968), Thomsen (1975), etc. These
results were generalized by Seely and El-Bassiouni (1983). They obtained
the Wald test for testing a null variance ratio by applying reductions in sum
of squares in a general linear model. They also provided the necessary and
sufficient conditions for the existence of the Wald test and showed that the
test statistics derived by Spjétvoll and many others are identical to the test
statistic of Wald. Lin and Harville (1991) carried out a simulation study on
the performance of the Wald test relative to the locally best test and the
Neyman-Pearson test, and showed that the Wald test is comparable to the
latter two tests.

Let p; denote the ratio of the ¢-th variance component to the error variance
in a random effect model. We will consider, in section 2, a problem of testing
H:p;=mr;foralli =1,2,... k against K : p; # r; for some ¢ in a general
random effect linear model. A test statistic for this problem will be derived by
applying the decomposition method to a variant of Rao’s MINQUE(Minimum
Norm Quadratic Unbiased Estimator) introduced in 1971. The resulting test
statistic has an F'-distribution under the null hypothesis. In section 3, the
approach is extended to obtain an exact test of a single variance ratio by
applying orthogonal projection on the model being considered. Section 4
contains concluding remarks and examples.

2. THE DERIVATION OF SIMULTANEOUS TEST
Consider the following general linear model:
y=1p+ X6+ -+ Xibe + € (21)

where y is a vector of n observations, u is a fixed unknown constant, 1
is a vector of ones of dimension n, X; is an n X b; design matrix, ¢ is a
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vector of b; uncorrelated random effects, and € is a vector of n random errors.
Further we assume that £; and € are statistically independent multivariate
normal random vectors with E(§;) = 0, Var(§;) = 0?1, for i = 1,2,..., %k and
E(e) = 0, Var(e) = o, L
Let C be a full row rank matrix of order (n — 1) x n such that C1 =

0,CC'=I,;and C'C=1,— —11' Then multiplying both sides of equation
(2.1) by C yields

Z = Clel + -4+ kaﬁk + Ce (22)

where z = Cy.

It can be shown (see Rao, section 9, 1971, for example) that the MINQUE
of 0 = (01, --,0},0%,,) for model (2.1) is the same as that for model (2.2)
and it is a solution to the equation

S6 =u (2.3)

where S = {tr (RV,RV;)},u = {Z'RV Rz} VvV, = CX,XIC' for 1,57 =
bk, Vi =L, and R = (XM r V) 1= + 28,7V~ with
denoting the a-priori values of p; = 0? /0%, , fori=1,--- k, and rpyq = 1.
To derive a test statistic for testing H : p; = r; for 1 = 1,2,..., k against
K : p; # r; for some ¢, we consider the linear combination Zk+11 r;u; where
u; is the ¢-th element Of u of equation (2.3). 5! ru; can be rewritten as

follows:
k+1

Zru,—zRI—f—Zrz YRz = z'Rz (2.4)

The quadratic form z'Rz can be decomposed into two parts, each of which
follows independently a central chi-square distribution under the null hypoth-
esis. For this decomposition, we will decompose matrix R into two parts
which are orthogonal to each other.

Since Y-, 7V, in matrix R is symmetric, it can be expressed as

k
Z riVi = PD(I‘)P,

i=1

where D(r) is a diagonal matrix of eigenvalues of ¥°F , r;V; and P is the
matrix of corresponding eigenvectors. Let g be the rank of Y%, 7, V;, and
the first g diagonal elements of D(r) be nonzero. Then, noting that the rank
of partitioned matrix (Vy,..., Vi), which will be denoted by m, is greater
than or equal to g, i.e., m = rank(Vy,..., V) > g, and that P is orthogonal,

459



460 Moon Yul Huh and Seung-Chun Li

we have
k _1
R = (I + vai) = (I+PD(r)P")™
=1
= P(I+D(r))"'P’' = PDj(r)P' + PD,P’ (2.5)
where

Di(r) = diag(1/(1+M(r)),...,1/(1 4 A(r),T,.. . 1,0,...,0),(2.6)
D, = diag(0,...,0,1,...,1),
R

n—1-m
and A(r) are nonzero eigenvalues of 5 V..

Combining the results of (2.4) and (2.5), we decompose S5+ r,u; into two
parts as follows:

k+1

> rau; =2z'Rz =2z'PD;(r)P'z + zPD,P'z. (2.7)

i=1

Note that m — ¢ > 0 when some of r;’s are specified to be zeros. Write

P =(p1,...,Pno1). If Pgt1,...,pm are selected so that the column space of
(P1,- -, Pm) is equal to the column space of % | V;, then it is straightforward
to see that z’PD7 (r)P'z/0}, | is a chi-square random variable with m degrees
of freedom when p; = r; for all i. Also it is easy to check that, for all
pi» ZPD,;P'z/0} | is a chi-square random variable with n — 1 — m degrees
of freedom and is independent of 2PD; (r)P'z/c?,,. This suggests to us
considering the following quantity as a test statistic for testing H : p; = r;
for 2 =1,2,...,k against K : p; # r; for some i:

n—1—-mzPD](r)P'z

F =
m zPD,P'z

The distribution of F' is F(m,n — 1 — m) under the null hypothesis and the
null hypothesis is rejected if the observed value of F is too large or too small.

Remark 1. Note that Zf;l r;u; 1s a linear combination of the MINQUE of
pi’s. From the decomposition of 55! ryu; in (2.7), it is clear that ZPD; (r)P'z
is a linear combination of the MINQUE of p’s. Hence z’PD; (r)P'z is locally
minimum variance unbiased quadratic estimator under the hypothesized val-
ues; see Rao (1973), pp. 303-305.
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3. THE DERIVATION OF SINGLE VARIANCE RATIO TEST

In this section, we will develop a test statistic for H : p; < r against

K : py > r under a certain condition on Xj in (2.1). For this, we rewrite
model (2.2) as

z = CX ¢ + CXE£ + Ce (3.1)

where X = (X,,...,X}) and ¢ = (£),...,&;). In this model, we assume that
the column space of CX; is not a subset of the column space of CX. This
condition together with n — 1 —m > 0, which was implicitly assumed in the
previous section, is identical to the condition that Seely and El-Bassiouni
(1983) used to derive the Wald test statistic for testing H : p; = 0 against
K :py > 0.

Under the assumptions, we have

q = rank(CX;, CX) — rank(CX) > 0.

There are two situations under this assumption. The first one is that the
column spaces of CX; and CX are essentially disjoint, i.e., col(CXy) N
col(CX) = {0}, such as the case of balanced designs. The second one is
that the column spaces intersect each other. The first situation is not consid-
ered here because it is easy to derive a test statistic and is essentially identical
to the second one.

Let M be the orthogonal projection matrix on the orthogonal complement
of the column space of CX. Multiplying both sides of equation (3.1) by M,
we have

t = Mz = MCX,¢ + MCe, (3.2)
since MCX = 0. For model (3.2}, matrix R of MINQUE is given by

R=(rMV,M +M)*

where At denotes the Moore-Penrose inverse or reflexive generalized inverse
of A and r is the a-priori value of p;.

For model (3.2), it is easy to check that rank(MV;M) = ¢ and rank(M)
=n-—1-—m+g¢q Since MV;M and M are commuting each other, there
exists an orthogonal matrix Q such that Q' MV, MQ and Q'MQ are diagonal
matrices with diagonal elements being the eigenvalues of the corresponding
matrices.

Then, noting that the column space of MV M is a proper subset of the
column space of M, matrix R can be decomposed as

R = (rMV,M 4+ M)* = QD (r)Q + QD,Q’
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where
. 1 1
Di(r) = diag R ,0,.. .,
17 1@ (l—i—r/\l L4, 0)
D, = diag(0,...,0,1,...,1,0,...,0)
S——— N——
q n—1-m
and A;’s are nonzero eigenvalues of MV ;M. Thus,
t'Rt =t'QD, (r)Q't + t'D,Q't. (3.3)

Note that both terms in the right-hand side of (3.3) do not depend upon the
unknown parameter £; or £ in (3.1), and that the first term depends only
upon the a-priori value r, which will be specified by the hypothesis.

Writing Dy (r) = 151_1/2(7“)]31_1/2(7“), 1t can be shown that

DI (r)Qt/ois ~ N (0,D;(r)Di(p)),
f)QQIt/Uk+1 ~ ‘/\[(07 132)5
and 3 _
D] (r)Var(Q't)D, = 0.
Hence t’Qlk)l—(7‘)Q,’t/cri+1 and 1:’(.;2]32(;2’1:/013Jrl are independent and are dis-
tributed as 3°7_ (1 + p1A;) /(1 + 7X)x? and \?, where y? and x? are indepen-
dent chi-square random variables with 1 and n — 1 — m degrees of freedom,

respectively.
Using the above results, we have the following test statistic,

n—1-— mt'Qﬁ;(r)Q't
q t'QD,Q't

The distribution of £ is F,,_;_, on the the boundary of hypotheses. Since
the numerator of [ is increasing with p; while the denominator is indepen-

F =

(3.4)

dent of p;, the rejection region of the test should be the upper tail of F-
distribution. The power of the test is given by

L1+
71-(pl):Przjl%—r/\ﬂ\/% n—1—m

Li=1

CX2

where ¢ 1s an appropriate constant so that the test is of desired size.
To compute the power of the test, we need to compute the probability of a
linear combination of central chi-square random variables. Farebrother(1984)
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gives an algorithm for this problem. Lin and Harville (1991) did a simula-
tion study for the power performance of the single variance component in
the mixed model with one random component. They showed that the perfor-
mance of the Wald exact test is comparable to the locally most powerful test
and the Neyman-Pearson test.

Note that the denominator of F'in (3.4), t’QD2Q’t, is equal to the residual
sum of squares of model (2.1) by the results of Propositions 3.3 of Seely and
El-Bassiouni (1983). We have the following result regarding the uniqueness
of our test.

Theorem 1. Assume that the column space of CX, is not a subset of the
column space of CX. Let A be a symmetric matrix such that A # 0. If
Y'Ay/oi ~ Xﬁ when p; = r and is independent of the error sum of squares
of model (2.1}, then p < ¢. Moreover, if p = ¢, then A = C’MQ]S;(T)Q’MC,
e,y Ay = t’Qf)l_(r)Q’t. Any test statistic that follows F, ,_;_,, distribu-
tion on the boundary of hypotheses is equal to the test statistic given in

(3.4).

. : . . : , 5 .
Proof. Because Var(y) is a positive definite matrix and y’'Ay/o{,, is a
central chi-square random variable when p; = r, we have

k
AT+ rX X+ ) pX XA =A forall p; >0

=2
and
1’A1 =0.

These mean that col(A) C col*(1,X,,...,X;) where col*(B) denotes the
orthogonal complement of the column space of B. Since C'C and M are
orthogonal projection matrices on col*(1) and col*(CX,, ..., CX}), respec-

tively, it can be concluded that C'CA = A and MCA = CA. Hence

A = A +rX;X)DA
= ACYI,_, +rCX,X|C')CA
= AC'M +rMV,M)CA
= AC(QD,(r)Q +QD,Q)CA (3.5)

The independence between y'Ay and the error sum of squares of model

(2.1), which is equal to y’C’MQf)QQ’MCy, implies
AC'QD,Q'C =0,
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and (3.5) is equivalent to
AC'QD,(r)Q'CA = A,
i.e., C'QD,(r)Q'C is a generalized inverse of A and hence
rank(A) < rank(C’'QD,(r)Q'C) = q.

Now assume that rank(A) = ¢q. From the decomposition of R, it is clear

col(CA) C col(Qﬁl(r)Q’). Note that QD*Q’ is the orthogonal projection
g
matrix on col(Qﬁl(r)Q’), where D* = diag(1,...,1,0,...,0)Q’. Thus,
AC = AC'QD"Q’

= AC'QD,(n)Q'QD; (1)Q
= AC'QD,(r)QCC'QD; (r)Q'.
This shows that
A =AC'C=AC'QD,(r)Q'CC'QD, (rQ'C
and
0 = AC'QD,(nQC(C'QD, ()Q'C - A)
= (cQD,(nQ'cA) (C'QD; (r)Q'C - A). (3.6)
Since col(A) C col(C'QD; (r)Q'C) and rank(A) = rank(C'QD, (r)Q'C)
by assumption, we can conclude that col(A) = col(C’QD] (r)Q'C). Hence

the column space of the left-hand matrix in (3.6) is a subset of the column
space of right-hand matrices. Therefore it must be the case that

A = C'QD,; (r)Q'C = C'MQD; (r)MQ'C.

The uniqueness of the test statistic follows by proposition 3.3 of Seely and
El-Bassiouni (1983).
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4. CONCLUSION AND EXAMPLES

The main object of this work is to develop an optimal test for H : p; < r
against K : p; > r. Because the test described in section 3 is based on the
locally minimum variance quadratic unbiased estimator, it can be expected
that the test would yield a certain local optimal property in the class of tests
based on quadratic forms of observations. However, for completeness, we
should evaluate the power performance of the test. For this purpose, we need
some referential tests to which the test can be compared. Unfortunately, it
is hard to find such a referential test except the case that we wish to test
H : p; = 0 against K : p; > 0. In this case, the test is identical to the Wald
test which is described in Seely and El-Bassiouni (1983) and we can refer
to Lin and Harville (1991) for the power performance, since the theoretical
power of our test behaves similarly to that of the Wald test.

In this section, we provide an explicit form of the test statistic in the
one-way model and numerical examples in the two-way model with some
computational remarks.

Example 1. Consider the following one-way random model:
Yij = p+ &+ €

where j = 1,---, n;;e = 1,---,b. Here p is a constant, and ¢ and €;; are
independent normal random variables with a common mean 0, and variances
o7 and o2, respectively. In matrix notation, the model can be written as

where 1 is a vector of 1’s, X is an n X b design matrix with n = Y°%_, n;, and ¢
and € are multivariate normal random variables with a common mean vector
0 and variance-covariance matrices ;I and o021, respectively.

Let rXX' = QEQ/, where E = diag(rn,,...,rn,0...,0) is a diagonal
matrix of eigenvalues of XX’ and Q is the matrix of corresponding eigen-
vectors. Then,

(I+rCXX'C')™" = (I+ CQEQ'C')™"
1 1 1\ 1 1
—I- CQE} (I + EEQ’C’CQE2> E:Q'C/
-1
—I- CQE} (I +ENQ’ <I - l»11') QE%) E:Q'C’
n

1
=1- CQE: <I +E-— l143%Q'11'Q1«3%) E:Q'C'.
n
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Noting
1 1, ' 1\ 7!
<I+E— “E}Q11 QEz)
n
-1 1 1 -1
11 ’
C(I+E)"+ (I+E) E21Q 1 QE21 (Il+ E)
n—1QEz(I+E) EzQ1
and

1 1 b
n—1QE? (I+E)EzQ1 =3 n;/(1 + rn;),
=1

the following result can be extracted after some algebra:

=1

T b ( )2 ( b 7‘"2(17;‘-—?..)>2
: — ni yl - —.. 1+7n,
ZRz=3 > (y;; —7.) +> Yo (4.1)

b ng
i=1j=1 = 1+ 2iz1 Thom;
where 7, = nl' Y yijandy =1 . 27ty yij. It can be shown that the

first term in the right-hand side of (4.1) is equal to z’PD;P’z. Thus, the test
statistic can be written as

P 2
<Z§ m!.(yi._y..)>
b niiﬂl.—y..f _ i=1 14rng

b_n- p Zi=1" 14rm, ims T (4.2
T bh-1 Yizt Tt (v — 7.)° | 7
i=1 =1 yzj y’t)

This test statistic was derived by Spjstvoll (1967). He considered the
hypothesis H : p < r against K : p = r; where r; > r. For this testing
problem, he derived test statistic w(r,r;) which depends on r,. His test is
known to be most powerful similar invariant test. w(r,r;) has the property
of maximizing minimum power over the set of alternatives with p > r;. For
testing A : p < r against H : p > r, he used w(r, co) which is equal to (4.2).

Example 2. Suppose that we wish to test H : p; = r; forall i = 1,... k
against K : p; # r; for some 7. As we noted earlier, if some of r,’s are
specified to be zeros, m — g terms of 1’s should appear in (2.6). In this case,
R in (2.5) essentially should be decomposed into three parts. Without loss of
generality we assume that first s r;’s are nonzeros and the others are zeros.
The decomposition can be obtained by the following steps:

1. Let Py = (p1,...,p,) where p;,i = 1,...,g, is the orthonormal eigen-
vector corresponding to the nonzero eigenvalue A;(r) of S0, r; V..



6.

Exact tests for variance ratios

Let Mp, = [ — P,P) and P, be a matrix of the eigenvectors corre-
sponding to nonzero eigenvalues of MPI(Zf:s-{-l V.)Mp;.

Let P12 = (Pl,PQ) and MP12 =]- P12P112.

Let P5 be a matrix of the eigenvectors corresponding to nonzero eigen-

values of Mplg(Zle V.)Mp,.

Let P = (P,,P,,P3) and arrange Ai(r)’s, 1’s and 0’s to form Di(r)
and D, in (2.6).

Compute the quadratic forms, zPDy (r)P'z and z’PD,P’z.

However, above-mentioned steps have only theoretical interest. In prac-
tice, it does not need to follow the steps because z’PD,P’z is the error sum
of squares and it is easy to compute in most cases. z'PDy(r)P'z can be
obtained easily by subtracting the error sum of squares from the z'Rz in

(2.7).

Table 1. A simulated two-way model data with
p1 =py =05 =1and p3=0.
Main factor B
Main Factor A 1 2 3 4 5

1 5.51977 4.08265 3.03083 6.61678 7.08004
4.87296 5.49475 6.26167
4.68780 6.98880 4.60492

7.77430
2 7.63796 5.19060 4.02078 7.85110 7.38554
5.83436 7.77191 4.40675 6.70512

6.09709 6.82135
5.78771 6.73037

3 5.84260 5.17246 3.16696 6.96194 5.73017
6.56457 5.36890 3.93901 8.88334 4.95029
5.60145 5.37305 3.84190 5.67665
6.19103 2.75663

4 7.91403 6.38014 3.63475 7.53400 5.51005
7.19771 5.30325 4.63748
5.55758 2.08913
4.95710 5.94035
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Using this strategy, we compute the test statistic for testing H : p; =
p2 = 1 and p3 = 0 where p;, p, and ps are the ratios of the main variance
components and the interaction variance component to the error variance
component, respectively, in a two-way model. A simulated data, shown in
Table 1, is generated under the null hypothesis with o3 = 1.

For the data, 2’PD; (r)P'z = 14.23614,z’PD,P'z = 40.91588,m = 19
andn—1—m= 33, we get F =10.60431. Since F0.025719,33 < F < F0,975119733,
the null hypothesis could not be rejected at the 5% significance level. Also for
the hypotheses, H : p; = 0 and H : p; < 0.5, F = 0.58996 and F' = 0.26714
are computed. Both of the null hypotheses could not be rejected at the 5%
significance level.
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