• Title/Summary/Keyword: Random Model

Search Result 3,657, Processing Time 0.033 seconds

Stochastic Mobility Model Design in Mobile WSN (WSN 노드 이동 환경에서 stochastic 모델 설계)

  • Yun, Dai Yeol;Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1082-1087
    • /
    • 2021
  • In MANET(mobile ad hoc network), Mobility models vary according to the application-specific goals. The most widely used Random WayPoint Mobility Model(RWPMM) is advantageous because it is simple and easy to implement, but the random characteristic of nodes' movement is not enough to express the mobile characteristics of the entire sensor nodes' movements. The random mobility model is insufficient to express the inherent movement characteristics of the entire sensor nodes' movements. In the proposed Stochastic mobility model, To express the overall nodes movement characteristics of the network, the moving nodes are treated as random variables having a specific probability distribution characteristic. The proposed Stochastic mobility model is more stable and energy-efficient than the existing random mobility model applies to the routing protocol to ensure improved performances in terms of energy efficiency.

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.

POISSON APPROXIMATION OF INDUCED SUBGRAPH COUNTS IN AN INHOMOGENEOUS RANDOM INTERSECTION GRAPH MODEL

  • Shang, Yilun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1199-1210
    • /
    • 2019
  • In this paper, we consider a class of inhomogeneous random intersection graphs by assigning random weight to each vertex and two vertices are adjacent if they choose some common elements. In the inhomogeneous random intersection graph model, vertices with larger weights are more likely to acquire many elements. We show the Poisson convergence of the number of induced copies of a fixed subgraph as the number of vertices n and the number of elements m, scaling as $m={\lfloor}{\beta}n^{\alpha}{\rfloor}$ (${\alpha},{\beta}>0$), tend to infinity.

A Note on the Strong Mixing Property for a Random Coefficient Autoregressive Process

  • Lee, Sang-Yeol
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.243-248
    • /
    • 1995
  • In this article we show that a class of random coefficient autoregressive processes including the NEAR (New exponential autoregressive) process has the strong mixing property in the sense of Rosenblatt with mixing order decaying to zero. The result can be used to construct model free prediction interval for the future observation in the NEAR processes.

  • PDF

Detection of Random Effects in a Random Effects Model of a One-way Layout Contingency Table

  • Kim, Byung-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.13 no.1
    • /
    • pp.1-19
    • /
    • 1984
  • A random effects model of a one-way layout contingency table is developed using a Dirichlet-multinomial distribution. A test statistic, say $T_k$, is suggested for detecting Dirichlet-multinomial departure from a multinomial distribution. It is shown that the $T_k$ test is asymptotically superior to the classical chi-square test based on the asymptotic relative efficiency. This superiority is further evidenced by a Monte Carlo simulation.

  • PDF

Spectral analysis of random process

  • Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.13-20
    • /
    • 1994
  • The spectrum estimation methods of random processes are expressed in this paper. Beginning with the basic theory, non-parametric and parametric methods are overviewed. As to non-parametric method, numerical calculation method is also discussed. As to parametric method, AR model is a very famous and effective model representing random process. Estimation methods of AR parameters which have been proposed are mentioned here. Wavelet analysis is a recently interested technique in signal processing. An application of wavelet analysis is also shown.

  • PDF

An Economic Order Quantity Model under Random Life Cycle (불확실한 수명주기의 제품에서의 경제적 주문량 모형)

  • Yun, Won-Young;Moon, Il-Kyeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.1
    • /
    • pp.73-77
    • /
    • 1993
  • This paper considers an Economic Order Quantity Model under random life cycle. It is assumed that the life cycle of the product is unknown; a random variable. Three cost parameters are considered; ordering cost, inventory carrying cost and salvage cost. Expected total cost is the optimization criterion. We show that the optimal cycle length is unique and finite, and present a simple line search method to find an optimal cycle length.

  • PDF

Bayesian Analysis for Random Effects Binomial Regression

  • Kim, Dal-Ho;Kim, Eun-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.817-827
    • /
    • 2000
  • In this paper, we investigate the Bayesian approach to random effect binomial regression models with improper prior due to the absence of information on parameter. We also propose a method of estimating the posterior moments and prediction and discuss some general methods for studying model assessment. The methodology is illustrated with Crowder's Seeds Data. Markov Chain Monte Carlo techniques are used to overcome the computational difficulties.

  • PDF

Random Walk Simulation for the Growth of Monolayer in Dip Pen Nanolithography

  • Kim, Hyojeong;Ha, Soojung;Jang, Joonkyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.164-166
    • /
    • 2013
  • Using a simple random walk model, this study simulated the growth of a self-assembled monolayer (SAM) pattern generated by dip-pen nanolithography (DPN). In this model, the SAM pattern grew mainly via the serial pushing of molecules deposited from the tip. This study examined various SAM patterns, such as lines, crosses and letters, by changing the tip scan speed.

Traffic Modeling and Analysis for Pedestrians in Picocell Systems Using Random Walk Model (Picocell 시스템의 보행자 통화량 모델링 및 분석)

  • Lee, Ki-Dong;Chang, Kun-Nyeong;Kim, Sehun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.135-144
    • /
    • 2003
  • Traffic performance in a microcellular system is much more affected by cell dwell time and channel holding time in each cell. Cell dwell time of a call is characterized by its mobility pattern, i.e., stochastic changes of moving speed and direction. Cell dwell time provides important information for other analyses on traffic performance such as channel holding time, handover rate, and the average number of handovers per call. In the next generation mobile communication system, the cell size is expected to be much smaller than that of current one to accommodate the increase of user demand and to achieve high bandwidth utilization. As the cell size gets small, traffic performance is much more affected by variable mobility of users, especially by that of pedestrians. In previous work, analytical models are based on simple probability models. They provide sufficient accuracy in a simple second-generation cellular system. However, the role of them is becoming invalid in a picocellular environment where there are rapid change of network traffic conditions and highly random mobility of pedestrians. Unlike in previous work, we propose an improved probability model evolved from so-called Random walk model in order to mathematically formulate variable mobility of pedestrians and analyze the traffic performance. With our model, we can figure out variable characteristics of pedestrian mobility with stochastic correlation. The above-mentioned traffic performance measures are analyzed using our model.