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ABSTRACT

A random effects model of a one-way layout contingency table is developed using a
Dirichlet-multinomial distribution. A test statistic, say 7, is suggested for detecting
Dirichlet-multinomial departure from a multinomial distribution. It is shown that the
T test is asymptotically superior to the classical chi-square test based on the asymp-
totic relative efficiency. This superiority is further evidenced by a Monte Carlo

simulation.
1. Introduction

Using an analogy to fixed effects and random effects in linear models, it appears that
almost all the methods for the analysis of multi-dimensional contingency tables have
focused on fixed-effects models, Fienberg (1975) points this out and lists the development
of a discrete analog to the nested and random effects (Model ) ANOVA models among
the unsclved problems in the analysis of multi-dimensional contingency tables,

We develop a random effects model for the one-way layout contingency table, Define
I-1
SfO:_ {(ply""pf-l>; 0<pl<17 =le1<1}v (1- 1)

I-1
S:: {(xl’ eney xl-l) ) ngign, ;1 xfgn}- (1- 2)
For our development we need the following definitions,

Definition 1.1. A random vector g(’z(Xl,..'., X;_;) has a multinomial distribution
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2 Byung Soo Kim
with 7 and p'=(py, ..., p1-1), denoted by X~M(m, p) if
n I
Pr(X:x):< >H b 1.3
- X1y e0ey X1/71
I-1 I-1
for x=S., p=S,°, where x,:n—;xf and p,:1—_§jlp,-,
Notationally, m(x; n, p) and M(x ; n, p), denote the multinomial mass function (1. 3)
and corresponding distribution function, respectively.
Definition 1.2. A random vector U=(U, ..., Ur.y) has a Dirichlet distribution with
8'=(By ..., 8r) denoted by U~D(g) if it has a probability density function (p. d. f)

given by

= (o) - ) a.n

for u=S.°, where 8:>0 for i=1, ..., ], B:félﬁ,- and P(t):S:x‘“‘e" dx for t>0. The
Dirichlet distribution can be reparametrized so that it can be denoted by D(z ; 6), where
w:=8:/B and 6=1/B for 7' =(Z1; ery 71-1)ES:" A Dirichlet mixture of multinomial
distributions is called the Dirichlet-multinomial distribution, and denoted by DM, =, 8).
Following Johnson and Kotz (1969) DM(#n, m, 6) can be expressed as

DM, =, 6)=M(n, i})/’\DQr, &). (1.5)

Mosimann (1962) provides an extensi~ve study of the Dirichlet-multinomial distribution,
thereby extending Skellam’s work on the beta-binomial distribution (Skellam, 1948). Brier
(1980) investigates the effects of the Dirichlet-multinomial distribution on the chi-square
test of a general hypothesis in the one-way layout contingency table and shows that
Pearson’s chi-square statistic is in fact asymptotically a constant multiple of a chi-square
random variable when the hypothesis is true,

Thus it follows that in a contingency table with 7 response categories and G groups the
Dirichlet-multinomial distribution DM(n,; ; T, §) can introduce random group effects,
since the j-th group probability vector, say bs is now randomly generated from D(Zr, 7))
and, conditional on the observed b, the j-th group response vector, say n;, has a
multinomial distribution M(xn,;, b5, where n,; is the j-th group size. Ina handy notation
this is described as

5% D(z, 6)
slnes, ) ~ Mnss, 5 (1.6
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for j=1, 2,..., G.

An example of a random group effects model for discrete data may be obtained by
modifying a worker-day example in Scheffé (1959, p.221). Suppose that an experiment
is performed in a factory with G workers and a machine run by a single worker, which
produces a certain item, say a metal sheet. We shall assume that day-to-day variation is
negligible during the experiment. We observe the degree of defectiveness in each metal
sheet and classify it into one of the [ response categories. Then #;; represents the number
of metal sheets produced by the j-th worker with the i-th degree of defectiveness,

The primary concern of this paper is hypothesis testing of the presence of random group
effects, which can be formulated as

H,:6=0 vs. H.:6>0. a.m
For testing (1.7) we find that Neyman's C(@) procedure yields a new test statistic,
denoted by 7. The asymptotic relative effiency e(X,*|T:) of the classical chi-square
statistic satisfies

e(X?| T, (1.8
where the equality holds iff group sizes {n,,}$., are asymptotically balanced or G=2.
The superiority of 7 test to chi-square test based on (1.8) is further evidenced by a
Monte Carlo simulation that compares the actual performances of those two statistics in

terms of their sizes and powers,

2. A Radom Effects Model of a One-way Layout

We consider a product of Dirichlet-multinomial distributions so as to implement random
effects in a one-way lavout contingency table. Experimentally this can arise from a
situation in which we have G unordered experimental groups and [ unordered response

Table 2.1 IXxG Contingency Table

Group
Response\; 1 2 G Response Total

1 L3N Hiz i [
2 #a1 Haz oo M6 Has
I niy Ry Nic nr,

Group Total oy Mo H.oc N,
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categories with #n,; observations taken in group J for j=1, 2,..., G. Data from such
sampling can be represented in the previous contingency table,

Let the j-th group response vector, given the group total be denoted by n' =y, ..,
#1-1;). One natural way of imposing random group effects on the j-th group response
vector is to generalize the multinomial distribution by allowing the group probability vector

itself to have a Dirichlet distribution. Thus we have

(nslus, ) = Mn,, #5) .1
for j=1, 2,..., G and
Uy, Uy, ..oy Us = D(B). @.2)

From (2.2) it can be easily shown that the means, variances, and covariances of U,’=

U=,..,U)) are

EWU)=p/B
Var(U)=$:(B—8:)/B*(B+1)
Cov(U;, UD=—B: B:/B*(B+1), i+j 2.3

for i, j=1, 2,..., I=1, where B=%. g
It is useful to change the parameters by putting
pi=8:/B, i=1,..., I-1
0=1/B. @4
Then it is an easy exercise to show that the marginal distribution of ", which is a

Dirichlet mixture of multinomial distributions, has a probability mass function (p. m. f)

hn;; ps, 6) ( " )[ﬁnﬁl(p + 6)]/[%,_,(” 0)] 2.5)

n; ) Jy = i TV T .
- Wijy eesy Wyj) -1 7=0 r=1 ’

where n;j:n+;—12::n;; for j=1,...,G.

We refer to a Dirichlet mixture of multinomials (2. 5) as a Dirichlet multinomial
distribution and denote it by
n; ~ DM(n.,, p, 8, 2.6)
where p'=(py, ..., p1-1), which is symbolically described as
n; ~ Mn,;, yz‘)'/]}D(?, o).
Thus as an extension of a ;;roduct multinomial distribution the joint distribution of
(ny, ..., 1) becomes a product Dirichlet-multinomial distribution, i.e,,

ind

1 % DM(nss, b, 0, j=1,....G. @7
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3. Detection of the Random Effects

In the product Dirichlet-multinomial model (2.7) 6 becomes the parameter of interest
for testing the existence of random group effects, becaus if #=0 the model reduces to a
product of multinomials; this is a device we and others have employed to allow a single
parameter to introduce random effects. Thus the null hypothesis H, of no random effects
and the alternative hypothesis H. of the existence of the random effects can be
expressed as

H, : 6=0,
H,:6>0. G

Based on the one-way layout contingency table in Table (2. 1) the loglikelihood function

of 6, apart from the additive constant, is given by

()= il{él zo log(pi-+76) — zo log(l+r¢9)}, 3.2

I-1
where pr=1- };1 bi.

3.1 Case of p Known
It is easy to show that the uniformly most powerful (UMP) test for H, versus H.
does not exist in this case. However, the LMP test of Potthoff and Whittinghill (1966)

rejects H, for large values of

02| _ 1< (& nmi=D . o 1Y)
o0 o=o—7jz=:1{§1 b: i (e DJ G.3
g I nij<nij'_1) —
ocggl{;;l zh }__-71,
I1-1 I-1
where iy =Hei— 3 Mis and pr=1—% b+

Potthoff and Whittinghill(1966) proposed a method of moment approximation to the
null distribution of 7 by finding constants e, f and g that satisfied

eTi+f L 2208, GO
where x2(g) refers to a chi-square random variable with g degrees of freedom and
«+7 is for ‘approximately distributed as’. However, by expressing 7 in (3.3) in terms

of a quadratic form we can suggest another approximation of the null distribution of 7.

To aid in the development, we introduce some useful results without proofs. Proofs can
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be found in Ronning (1982).
Lemma 3.1. Under H, the convariance matrix of 1_'1,-’:(711,-, -y M_1;) 1s given by
Cov(n) =n.;[D, —pp’]
=n,; V, (3.5)
where D, =diag(p,, ..., pi-)), and V:Dpl—gg’.
Lemma 3.2, Let 1 and D,, be defined as in (3.5). Then
V=D, “t4+(1/pE, (3.6)
where £ is an (=1 X {I~1) matrix consisting of one’s only,

Lemma 3.3, Let Z; be an (I—1)x1 vector with entries

2= \/nT,.( Z —p,-> for i=1,.., I-1, j=1,..., G, then

ZiVizZ = él (= p)?/ng; b G.D
is Pearson’s chi-square statistic for goodness of fit in the j-th group, Hence Zy V-t Z;
has an asymptotic chi-square distribution with 7 degrees of freedom under H,,
Simple calculation can show that the test based on 7; in (3.3) is equivalent to the
test based on
Tl*:[@-M;Q+é@~%})’V‘lE@j—@Hgﬁ%@—%})], 3.8
where 1is a (J—1)x1 vector of one’s only and I>>2,
Then by use of Lemma 3.3 we can derive the following results;
(1> When the n,/s are all equal and pz(l/])}, T* is equivalent to Pearson's
chi-square statistic.

(2) If we assume that there exist a;, 0<a;<1 for j=1,..., G such that

a; = lim n*"—-, then the limiting distribution of (1/n. ) T * is of the form
Ty P
L+ 2, S -1 (3.9
n., 1 _]{—; j=lain( »0), .

where {x;(/—1,9); j=1,..., G} is a set of independent noncentral chi-square random
variables with 7—1 degrees of freedom and noncentrality parameter 52?2( p,——-}—)z
and ‘D’ implies convergence in distribution. )

(3) In the special case of equal #.,’s we have

L7+ D, cu-n, 6,
H.

[ o

where § is defined in (3,9).
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3.2 Case of p Unknown

The case of unknown p is far more interesting, especially in terms of applicability to
real problems, It can be shown that a locally optimal test H,:60=0 versus H,:6>0
does not exist. However, a C(a) test is readily available,

In order to derive the C(&) test statistic we need the following partial derivatives of

the log-likelihood ¢(#) in (3.2) evaluated at =0,

0 G (1 gy (. — (1
6=, =5 (B G- eyl 310
04| _ & [ —nul—D | (= Si—1) (= =1
¢2£<2)‘4 op: a6 0=0—_j§1{ 2p:® + = 201 — } (3.1D)
for i=1,2, ceuen ,I—-1.
ppy="50 —-13 (s ”ff(n”_},?z@”“_l) — (e~ D2~ D] (3.12)

Under H, ni; ~ B(n,;, p:), hence
Ey[62:(p)]=0 for i=1,..., I-1,
where E, implies that the expectation is taken under §=0.
Neyman (1959) (see also Moran, 1970) has shown that when Ey[¢2:(p)1=0, the null

hypothesis can be tested using the statistic ¢1(~p), where ZJ is a root-#,, consistent

~ G
estimator of p. An obvious choice of p is the MLE 1‘2: nl S n; under H, Substitu-

++ #=1

ting the MLE Z) in (3.10) we obtain

26:(9) = 3, [ B V- Tn—nes 1= U= D (3.13)

S L Mai [ s Wiy —]2
=n - | —{d—=Dngy,
++j§l i‘=\:1 R s g I=1Dn.y
where V:Ds‘.—f)ﬁ’.

Hence we see that the C(a) test is based on

Tk:zzn—( R e (3.14)

£ e \ Wy, LT

In determining the approximate null distribution of T, two limiting results are available,
One uses the central limit theorem (CLT) on the iid multinomial random vectors as the

sample size G tends to infinity. In this limiting argument, T:, properly normalized, has
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an asymptotic N(0, 1) distribution by the result of Neyman’s C(a) procedure (Neyman,

1959).
Since Eo[¢2,-(?)]=0 for i=1, 2,...,/—1, the variance of ¢1(Z’) is estimated by

—Eo[¢5($)]. From (3.12) it follows that

. G
—Eo[$s(P))= LU~ DE nu(n— 1. (3.15)
Since Ty= nl 26, ( Z))+(I —1), by normalizing 7T}, we find that under H,:6=0 the
statistic
R [Ti—-{d-D7?
X=2U-D 5 nes(Mai—1) (.16
ne,  ist

has an asymptotic chi-square distribution with 1 degree of freedom.

We may consider another limiting argument that uses the multivariate normal approxima-
tion of the multinomial distribution when the number of groups, G, is held fixed and the
group sizes {n,;}$., tend to infinity in such a manner that Myl —a;, 0<a;<1, for
Jj=1,...,G. In the following discussion, the approximate null and alternative distributions
are based on this limiting arguments, which may better reflect practical experimental
considerations where the number of groups is fixed; we conjecture_ that these results will
provide a better sampling approximation for finite sample sizes,

The hypothesis test H,: 6=0 versus H,:6>( has been described as detection of a
Dirichlet-multinomial departure from the multinomial distribution, For this purpose
Pearson’s chi-square statistic X: that has been proposed for fixed effects problem is

worthy of consideration:

&L n., Mig iy s 2
X’_jz=:1i2=:1 Miy [«/n“‘ Ry V| G.17

For the relation between these two statistics 7} and X:, we observe that when #,;=
n for j=1,...,G, the test based on 7 is identical to the test based on X:. For the
comparison of these two statistics in terms of large sample behavior, we obtain the

asymptotic relative effiency (ARE) of X: relative to T;.

4. Approximate Null and Alternative Distributions

4.1 Approximate Null Distributions
We define the following notations for j=1,2, ..., G;
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Zy/=Z;(p)= Jlﬁ—'(nli_n+ipls esey Mrogi =M Proy) @D
By prop = (e, ., St ) “.2)
?;‘= Z,(D) (4.3)
g: (.Zl,, ng’ seey g‘;’), (4' 4)
g: (: 1,9 :22,7 seey __ZG’), (4. 5)
7R n, [T AY
=/ e, e o} 22) “.6)
- { P41 (%) Mic \’
M—< T 7 VR TN ) 4.7
c=lim i .
¢ ngr-l—»oo Ny 4.8
7n,,—00
JA=(Vay, ., Yao)' (4.9
A=(ai, +er, @)’ 4. 10)
We may express +A=lim +} and A=lim M,
M, 00 Ny 00

It is well known that as #,;—o0

D
Z; = N©O, V) 4.11)

0
for j=1,..., G, where

V=V($)=D,,~pp"
Also we note for j=1,..., G

2=Z— Vi (p—P)

, ¢

=z (2 )"y (22) "2 4.12)
By using the above we can express 2 in terms of 2 as

Z=[(L— VI VI ®L-11Z, 4.13)
where I, is a kxFE identity matrix and ® stands for the Kronecker product. The
asymptotic distribution of Z can be obtained by using (4.11) and the independence of
Zyy -ens Zs:

z 2. no, Lew. (4.19)

- [

Hence by using (4.13) and the idempotency of (Js— vA VA" we obtain
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~ D o
Z = NO, U= VAVANO V). (4.15)
0

Now, Pearson’s chi-square statistic X: can be expressed as
G A N ps
X'=XZ/V-1Z
# 1=l . . .
=Z'(: ® V“)_Z. (4.16)
For further discussion, the following Lemma is useful,
Lemma 4.1. Under H, V= Vt0,(1).

Proof. Using maximum absolute column sum ll«ll; for the matrix norm we have
IN -1 -t
V- VHI=1IST}§§<'1 2 b bi—pipn =2 1p:bi=pi pul,

where plzl—fgpf and p is accordingly defined. Since #,, ?OB(nH, b)), pi=pi+0,(1)
as #M,,.—0co fo; i=1,...,/—1. Thus by the continuity the result follows,
Thus by Lemma 4.1 (4.16) can be written as

X =Z' L@V Z1+0,(1). “4.17)
By invoking a theorem in quadratic forms it can be seen that X: is asymptotically

distributed as
Xz D (1—1)2* R
, E’ .§1 H (D, (4.18)

where{4*; i=1,..., (J—1)G} is the set of eigenvalues of

LRV DUe— VAVAIRVI=Us~ VA VAL, (4.19)
and {x:(1); i=1,..., d—1)G} are iid chi-square random variables with 1 degree of
freendom. The eigenvalues of (Jo— A vA)®I_; are cross products of eigenvalues of
(lo— v A +A’) and those of I;.;, Since I,_, has an eigenvalue 1 with multiplicity /—1,
(4. 18) is equivalent to

. D e
X 7 Zpixid-1), 4. 200
* o i=1

where p/’s are eigenvalues of (li— v A v A").
Since Io— v A v A’ is idempotent and of rank G—1 we have (G—1) one’s and one zero

for its eigenvalues., Thus (4. 20) becomes

2 D
X, w0 2 ((=DG-1)), (4.21)

a well known result,

We now consider the null distribution of the C(a) statistic 7%, which can be expressed as
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Tk: (n++>_‘i:1 g _Z:‘l ‘7-1 _21'

() (), amw
For notational convenience we define
Zp= (ZT;)MZ (4.23)
and
75~ ‘(Z* AL (4. 20)

By the same arguments for obtaining the distribution of Z in (4.13) we obtain:

2+ 2o N, Dum 44DV,
where

Da.=diag(ay, -.., @s).
Now, using 2 * and Lemma 4.1, we can express 71: as

Tu=Z* (L@ V-HZ*(1+0,(D). (4.26)
Thus, using the same arguments employed in (4.18)—(4.20) the asymptotic distribution
of T. under H, is obtained as

D ¢
T, — X Axid—D, 4.27)

0 =1

where {1;;7=1,..., G} is the set of eigenvalues of (Da;—AA").

We may note here that #n(Da,—AA’) is the singular covariance matrix of a multinomial
distribution M(n, A).

Even though some computer subroutines can readily provide the eigenvalues of
(Da,—AA”), the determination of the eigenvalues appears to be an algebraically unsolved
problem except that one of the eigenvalues is known to be zero. (Roy et a/, 1960, Light
and Margolin, 1971, and Ronning, 1982). Since the @’s are known, however, we may
approximate the distribution of Tk by gx?(h), where the constants g and 4 are chosen
so that g¢*(%) has the same first two moments as those of T:. In doing this we use

following results on Da,—AA’;

G
trace(Day— AA) =1+ oot Ton=1— 3 @ (4.28)
G G G
trace(Day— AA YV =2+ +25, = % @ —2% o'+ (X a®)* (4.29)

Thus the asymptotic distribution of 73 can be approximated as
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8 Th 5o (),
where
1— iajz
G G =t c
Xal—23 af+ (3 a)?

gt=
and .
(~DA-X a?*
5 a2 i+ (Y af)

jm1

4.2 Approximate Alternative Distributions

We next derive the asymptotic distribution of X ; and T; under H,. Here we use the
remarkable resemblance of the mean and covariance matrix of the Dirichlet-multinomial

to those of the multinomial distribution (Mosimann, 1962);

Esm)=n.;p, j=1,...,.G (4.30)
Cove(n) =(L 2V, v, j=1,...,6, (4.3

where the subscript @ indicates that the underlying distribution is the Dirichletmultino-
mial,

It has been observed that there are four different asymptotic forms of the Dirichlet-
multinomial distribution (Paul and Plackett, 1978). Among them, one is of particular
relevance to our development,

Theorem 4.1 (Paul and Plackett, 1978).

Let

1y~ M(as, ) \D(E)=MCn.s, 1 7\D(p, 0), (4. 32)
where ) )

B=(B1 sy B, D=(D1, er0y P1-1)’
and the p’s and @ are defined in (2. 4).

Write 8;=#n,, ¢: for all 7, where ¢s are fixed quantities and let #,,—oc0, Then

”+s'%({?f“ﬂ+i?) _[DJ_: NQ, 7,0 V), (4.33)
where

Tj(ﬁ)zl'i‘{l}‘(i’l+j 64+1).
We may note that by the construction of Bi=n,.¢; for all i we assume that

0:@15.-)"=0n++:o<1/n++>.
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Hence using this result of Paul and Plackett, it is easy to see that

D
Z 4 N, r:(OV), 4.30)
and
D
_Z 7{_) N(Q: DT" ® V)v (4. 35)
where
Dy, =diag(7:1(0), --svves 76(0)).
Thus by using (4.13) and (4.35) we obtain
~ D
where
Q=D — VAVA'Dy,— Dy, vANVA' + VAVA' Dy, vAVA’
ie.,

. ¢
n—2antal oy
k=1 c
Tz—2a2 T2+ aghgl Ar T2

. sym,
— Ja; aj(‘}’i-i-Tj-hglak 7’1;)

¢
Te—2ac 76+ (XG?:: lak Tk

Now it becomes straightforward to show that

. D [ 2
X, g Tidind-D, 4.3D
where {3;:7=1,...,G} is a set of eigenvalues of @, and
D G
T, T ;5:'* 1i(I-1), (4.38)

where {0* :i=1,...,G] is a set of eigenvalues of Dy @D vz,
4.3 ARE of X? Relative to T

To summarize the relevant distribution results, we have derived the following:

@ X, #U-DG-1]

D .
) T, = ilxix_(l—1),
> ZA,

i

where A/s are eigenvalues of Da,—AA’.
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xt 2, sy
(C> » _H:) lg;laiXicl_l)’

where d/'s are eigenvalues of @.
D G
@ Ti 50 Zorpid-D,
where 6,*s are eigenvalues of Dy, @D yz.

Thus it can be shown that
Var(X,|H)—2I-1D(G—-1) (4.39)
Var(Ty| H)—2(- D, 42=2(I—1) trace (Daim AA'Y

—2(I-DIF ar- £ e+ (E ad 4. 40)

d 2
S B[ X}| H.]

0:(1_1>(1—J_=§1 a)=—1) trace (Da—AAD (441

6=

;’0 E [ Tu| H.

,=U=DIE e =28 e+ (E a7
=(I~1) trace(Da,—AA")?, (4. 42)

Hence the asymptotic relative efficiency (ARE) of the chi-square statistic X, relative

0=

to the C(a) statistic T} is given by
(- Fap
e G D[ Der 25 e T (BaDT]

IR R
G-+t Aty ?

where under H, 6=0.,,=0(1/ns4).

(4.43)

Interestingly Collings and Margolin (1983) obtained the same expression of an ARE
as (4.43) when they compared a C(a) test with another test for detecting a negative
binomial departure from a Poisson in the regression through the origin case. They proved
the following:

Theorem 4.2 (Collings and Margolin, 1983).
—E—_l_—l‘g eric < 1,

where the left equality holds if and only if G=2 and the right equality holds if and
only if the group sizes {n,;}$.. are asymptotically balanced.

Using the expression of ARE erc in (4.43) we can prove

Lemma 4.2. The C(a) test is asymptotically equivalent to Pearson’s chi-square test

if and only if G=2 or all the group sizes {u.;}¢.. are asymptotically balanced.
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Proof. We may express épic as
erczzz/<S: +72>,
where
G-1 G-1 _
7:(6—1)"‘;2; and Siz(G—l)Z1 (Ai—2)*
Thus emc=1 if and only if Si=0. But Si=0 if and only if G=2 or A4=...=e_y,
which is equivalent to a,=...=as(Light and Margolin, 1971, and Ronning, 1982),

4.4 Monte Carlo Simulation: Power Comparison

As shown above, the test based on T, is superior to Pearson’s chi-square test based on
considerations of asymptotic relative efficiency; however, the large sample properties do
not necessarily hold for small samples, nor are the local properties of the asymptotic
relative efficiency readily transferable to practical situations, Therefore, a Monte Carlo
simulation was conducted to compare the performance of the two tests in terms of their
sizes and powers.

The data for the Monte Carlo simulation were generated on the VAX 780 computer
system at the National Institute of Environmental Health Sciences. The program was
written in Fortan and used two IMSL subroutines: GGAMR and GGMTN.

The following Lemma is useful to generate random observations from a Dirichlet
distribution, say D(p, 0).

Lemma 4.3 (Wilks, 1962). Let Xi, X5, ..., X, be independent variables having gamma
distributions G(1, B1), G, B2 -y G(15 Brs1).

Define
Yi=X:/ (2. X0
for i=1, ..., k.
Then lfz(Yl,..., Y.) has a Dirichlet distribution D(B), where B=(B +ors Bi+1), and
D) is defined in (1.4).

The Dirichlet distribution D(8) can be reparametrized as D(p, ) by (2.4). The
Fortran- program of the Monte Carlo simulation is outlined as follows;

(D Set p=Dy, and =0, and initialize {n.;}}-: and the upper bound(upbound) of 6.

(ii) Generate a set of 5 independent probability vectors i, ..., i#s from a Dirichlet
distribution D(p, &) using IMSL subroutine GGAMR and Lemma 4. 3.

(iii) Generate a contingency table from a product multinomial distributions
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I"(I; M(n.;, u;) using IMSL subroutine GGMTN.

(iv) Calculate Ty and X,

(v) Count the number of T} and X ; values exceeding their cut off values corresponding
to a=0, 05.

(vi) Go to the step (ii) and repeat for 2,000 times,

(vii) Set 8=8,+4 and go to the step (ii) until § > upbound.

For the calculation of sizes of T} test and the X . test a subset consisting of (iii)—

Table 4.1 Two Sets of Input Values of the Program

' First Set ' Second Set
P, ) (0.05, 0.1, 0.4, 0.45) | (0.1, 0.15, 0.3, 0.45)

B | 0.001 | 0.001

4 | 0. 002 | 0. 003

Upbound | 0.031 | 0.025

Group sizes ’ 20, 20, 20, 200, 400 ’ Same

Table 4.2 Approximate Power of T, and X,? for 0.05 Size,

po=(.05, .1, .40, .45) and
{n.i};.1=1(20,20, 20, 200, 400}
Approximate Power

g T X,? Difference
0. 000 0.0525 0. 0505 0. 0020
0. 001 0. 1060 0. 0885 0.0175
0. 003 0. 2445 0.1700 0.0745
0. 005 0. 3545 0. 2685 0. 0860
0. 007 0. 4535 0. 3680 0. 0855
0. 009 0. 5255 0. 4470 0.0785
0.011 0. 5860 0.5175 0. 0685
0.013 0. 6385 0. 5855 0. 0530
0.015 0. 7030 0. 6480 0. 0550
0.017 0. 7165 0. 6645 0. 0520
0.019 0. 7555 0.7270 0. 0285
0. 021 0. 7805 0. 7600 0. 0205
0. 023 0. 7950 0.7925 0.0025
0.025 0.8110 0. 8100 0.0010
0. 027 0. 8250 0.8175 0. 0075
0.029 0. 8465 0.8410 0. 0055

0.031 0. 8640 0.8610 0. 0030
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(vi) of the above program was employed, because putting #=0 in the step (i) involved
division by zero in the step (iii).

The actual program was run for two sets of p, and f ranges with the same group
sizes, which are listed in Table 4. 1.
The asymptotic relative efficiency of X, to T is 0.415 for these group sizes, Tables
4.2 and 4.3, respectively, display approximate power functions of 73 and X ; tests for
an 0.05 level based on the first and the second sets of input values. Over the ranges of
8 values considered the difference in powers can be as large as 0.086 for the first set of
input values and 0.115 for the second set, The ratio of the power of the 7T, test to that
of the X test falls as low as 0.76 in both cases considered. Clearly, the 7, test can
perforn better than the X test.

Table 4.3 Approximate Power of T and X,? for 0.05 size,

po=(1, .15, .3,.45) and
{n,s)5%:2= {20, 20, 20, 200, 400)

Approximate Power

7} T X,? Difference
0.000 0. 0535 0. 0480 0. 0055
0.001 0.1050 0.0780 0. 0270
0.004 0. 2900 0. 2095 0. 0805
0. 007 0. 4790 0. 3640 0. 1150
0.010 0. 5825 0. 4885 0. 0940
0.013 0. 6460 0. 5840 0. 0620
0. 016 0. 7265 0. 6865 0. 0400
0.019 0. 7640 0.7390 0. 0250
0.022 0.7870 0. 7815 0. 0055
0.025 0. 8440 0.8335 0. 0005

5. Summary

This paper develops a random effects model of a one-way layout contingency table
using Dirichlet-multinomial distributions {DM(n.; ; p,}§-., and suggests a new test
statisticc say 7: by applying Neyman'’s C(a) procedure for detecting random effects
when b is unknown, The 7T, statistic is basically a weighted average of the Pearson's
chi-square statistics, Comparison is made between the 7. test and the chi-square test in

terms of the Pitman asymptotic relative efficiency. It turns out that the T3 test is in
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general asymptotically superior to the chi-square test. This superiority is further evidenced
by a Monte Carlo simulation which compares the performance of these two tests in terms

of their sizes and powers,
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