• 제목/요약/키워드: Random Analysis

검색결과 4,663건 처리시간 0.039초

음향 가진에 의한 로켓 탑재부의 동적 응답 해석 및 시험 (Analysis and Test of Dynamic Responses of Rocket Payload Section Induced by Acoustic Excitation)

  • 박순홍;정호경;서상현;장영순;이영무;조광래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.717-720
    • /
    • 2005
  • Acoustic loads generated by a rocket propulsion system cause severe random vibrations on payloads. In developing a new launch vehicle, a random vibration level must be specified before the detailed design of payloads or electronic equipments. This paper deals with prediction procedures of a random vibration level on payload section of KSLV-I. The prediction is based on statistical energy analysis. In order to verify the prediction methodology, test and analysis on a sub-scale payload section are performed. The predicted results subject to very high level of acoustic loads show a good agreement with the test results performed in the high intensity acoustic chamber. The predicted random vibration level on payload section of KSLV-I is also presented in this paper.

  • PDF

2차원 자가 보정 알고리즘에서의 불확도 전파 (Error propagation in 2-D self-calibration algorithm)

  • 유승봉;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.434-437
    • /
    • 2003
  • Evaluation or the patterning accuracy of e-beam lithography machines requires a high precision inspection system that is capable of measuring the true xy-locations of fiducial marks generated by the e-beam machine under test. Fiducial marks are fabricated on a single photo mask over the entire working area in the form of equally spaced two-dimensional grids. In performing the evaluation, the principles of self-calibration enable to determine the deviations of fiducial marks from their nominal xy-locations precisely, not being affected by the motion errors of the inspection system itself. It is. however, the fact that only repeatable motion errors can be eliminated, while random motion errors encountered in probing the locations of fiducial marks are not removed. Even worse, a random error occurring from the measurement of a single mark propagates and affects in determining locations of other marks, which phenomenon in fact limits the ultimate calibration accuracy of e-beam machines. In this paper, we describe an uncertainty analysis that has been made to investigate how random errors affect the final result of self-calibration of e-beam machines when one uses an optical inspection system equipped with high-resolution microscope objectives and a precision xy-stages. The guide of uncertainty analysis recommended by the International Organization for Standardization is faithfully followed along with necessary sensitivity analysis. The uncertainty analysis reveals that among the dominant components of the patterning accuracy of e-beam lithography, the rotationally symmetrical component is most significantly affected by random errors, whose propagation becomes more severe in a cascading manner as the number of fiducial marks increases

  • PDF

실험적 모우드 계수를 이용한 교량의 주행하중 해석 (Moving Load Analysis of Bridge Structures Using Experimental Modal Data)

  • 이형진
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.409-420
    • /
    • 2002
  • 본 논문에서는 상시진동계측 결과를 활용하여 교랑의 이동하중해석을 수행하기 위한 구조재해석 기법을 제시하였다. 구조재해석을 위해 필요한 실구조물의 고유진동수와 모우드 형상은 직접퓨리에 분석을 통해 구하고, 감쇠비는 Random Decrement기법을 이용하는 방법을 사용하였다. 또한, 계측 모우드 형상을 구조재해석에 필요한 자유도로 보간하기 위한 보간법을 제시하였다. 더불어, 제시된 구조재해석기법을 이동질량 모형에 기초한 주행하중 해석에 적용하여 이를 직접 해석한 결과와 비교하였다 해석결과는 상시진동 계측의 결과만을 이용하여 수행된 구조재해석 결과도 교량의 실제 응답을 잘 표현할 수 있음을 보여주고 있다.

랜덤 진동 시험 및 해석 기법을 이용한 무인 비행체의 비행 진동 환경 규격 연구 (A Study on the Flight Vibration Environmental Specification of Unmanned Flying Vehicle using Random Vibration Test and Analysis Methods)

  • 최장섭;오동호
    • 한국군사과학기술학회지
    • /
    • 제25권6호
    • /
    • pp.596-605
    • /
    • 2022
  • In this study, analysis of dynamic characteristics and flight vibration was performed to unmanned aerial vehicles. The analysis model was supplemented by performing a dynamic characteristic test and a random vibration test using manufactured dummy aerial vehicle. For the dynamic characteristic test, a bungee cable was used to implement the free end boundary condition. Prior to the flight vibration test using a multiple electric shaker, a random vibration test was performed to predict the excitation force during the actual flight vibration test. It was judged that the actual test could be predicted more accurately by supplementing the analysis model from the test results. In addition, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test.

Hysteretic model of isolator gap damper system and its equivalent linearization for random earthquake response analysis

  • Zhang, Hongmei;Gu, Chen
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.485-498
    • /
    • 2022
  • In near-fault earthquake prone areas, the velocity pulse-like seismic waves often results in excessive horizontal displacement for structures, which may result in severe structural failure during large or near-fault earthquakes. The recently developed isolator-gap damper (IGD) systems provide a solution for the large horizontal displacement of long period base-isolated structures. However, the hysteresis characteristics of the IGD system are significantly different from the traditional hysteretic behavior. At present, the hysteretic behavior is difficult to be reflected in the structural analysis and performance evaluation especially under random earthquake excitations for lacking of effective analysis models which prevent the application of this kind of IGD system. In this paper, we propose a mathematical hysteretic model for the IGD system that presents its nonlinear hysteretic characteristics. The equivalent linearization is conducted on this nonlinear model, which requires the variances of the IGD responses. The covariance matrix for the responses of the structure and the IGD system is obtained for random earthquake excitations represented by the Kanai-Tajimi spectrum by solving the Lyapunov equation. The responses obtained by the equivalent linearization are verified in comparison with the nonlinear responses by the Monte Carlo simulation (MCS) analysis for random earthquake excitations.

Performance Analysis of Perturbation-based Privacy Preserving Techniques: An Experimental Perspective

  • Ritu Ratra;Preeti Gulia;Nasib Singh Gill
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.81-88
    • /
    • 2023
  • In the present scenario, enormous amounts of data are produced every second. These data also contain private information from sources including media platforms, the banking sector, finance, healthcare, and criminal histories. Data mining is a method for looking through and analyzing massive volumes of data to find usable information. Preserving personal data during data mining has become difficult, thus privacy-preserving data mining (PPDM) is used to do so. Data perturbation is one of the several tactics used by the PPDM data privacy protection mechanism. In Perturbation, datasets are perturbed in order to preserve personal information. Both data accuracy and data privacy are addressed by it. This paper will explore and compare several perturbation strategies that may be used to protect data privacy. For this experiment, two perturbation techniques based on random projection and principal component analysis were used. These techniques include Improved Random Projection Perturbation (IRPP) and Enhanced Principal Component Analysis based Technique (EPCAT). The Naive Bayes classification algorithm is used for data mining approaches. These methods are employed to assess the precision, run time, and accuracy of the experimental results. The best perturbation method in the Nave-Bayes classification is determined to be a random projection-based technique (IRPP) for both the cardiovascular and hypothyroid datasets.

재료 물성치의 불확실성에 의한 복합적층판 변위의 확률적 거동 (Probabilistic Behavior of Laminated Composite Plates with Random Material Properties)

  • 노혁천
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.27-32
    • /
    • 2008
  • The laminated composite materials have been applied to various mechanical structures due to their high performance to weight ratios. In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates. The composite materials consist of two different materials which constitute the matrix and fiber. The material properties in the major and minor directions are determined depending on the volume fraction of these two materials. In this study, the elastic modulus and shear modulus are considered as random and the effect of these random properties on the behavior of the composite plate is investigated. We adopt the weighted integral scheme in the formulation, which has been recognized as the most accurate method in the statistical methodologies. For verification of the proposed scheme, Monte Carlo analysis is also performed for the comparison with the proposed scheme.

  • PDF

Reliability sensitivities with fuzzy random uncertainties using genetic algorithm

  • Jafaria, Parinaz;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.413-431
    • /
    • 2016
  • A sensitivity analysis estimates the effect of the change in the uncertain variable parameter on the probability of the structural failure. A novel fuzzy random reliability sensitivity measure of the failure probability is proposed to consider the effect of the epistemic and aleatory uncertainties. The uncertainties of the engineering variables are modeled as fuzzy random variables. Fuzzy quantities are treated using the ${\lambda}$-cut approach. In fact, the fuzzy variables are transformed into the interval variables using the ${\lambda}$-cut approach. Genetic approach considers different possible combinations within the search domain (${\lambda}$-cut) and calculates the parameter sensitivities for each of the combinations.

입자 속도 및 인텐시티를 공간 영역에서 이산화할 때 발생하는 오차 (Particle Velocity and Intensity Estimation Error in Spatial Discrete Domain)

  • 김양한;최영철
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.352-357
    • /
    • 2004
  • This paper studies the errors that associated with particle velocity and intensity in a space. We theoretically derived their bias error and random error. The analysis shows that the more samples do not always guarantee the better results. The random error of the velocity and intensity are increased when we have many samples. The characteristics of the amplification of the random error are analyzed in terms of the sample spacing. The amplification was found to be related to the spatial differential of random noise. The numerical simulations are performed to verify theoretical results.

Vibration analysis of a uniform beam traversed by a moving vehicle with random mass and random velocity

  • Chang, T.P.;Liu, M.F.;O, H.W.
    • Structural Engineering and Mechanics
    • /
    • 제31권6호
    • /
    • pp.737-749
    • /
    • 2009
  • The problem of estimating the dynamic response of a distributed parameter system excited by a moving vehicle with random initial velocity and random vehicle body mass is investigated. By adopting the Galerkin's method and modal analysis, a set of approximate governing equations of motion possessing time-dependent uncertain coefficients and forcing function is obtained, and then the dynamic response of the coupled system can be calculated in deterministic sense. The statistical characteristics of the responses of the system are computed by using improved perturbation approach with respect to mean value. This method is simple and useful to gather the stochastic structural response due to the vehicle-passenger-bridge interaction. Furthermore, some of the statistical numerical results calculated from the perturbation technique are checked by Monte Carlo simulation.