• Title/Summary/Keyword: Raman Spectroscopy

Search Result 1,152, Processing Time 0.03 seconds

CuO Nanograss as a Substrate for Surface Enhanced Raman Spectroscopy

  • Lee, Jun-Young;Park, Jiyun;Kim, Jeong-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.249-249
    • /
    • 2013
  • Surface-enhanced Raman spectroscopy (SERS) is a sensitive approach to detect and to identify a variety of molecules. To enhance the Raman signal, optimization of the gap between nanostructures is quite important. One-dimensional materials such as nanowires, nanotubes, and nanograsses have great potential to be used in SERS due to their unique sizes and shape dependent characteristics. In this study we investigate a simple way to fabricate SERS substrates based on randomly grown copper oxide (CuO) nanowires. CuO nanograss is fabricated on pre-cleaned Cu foils. Cu oxidized in an ammonium ambient solution of 2.5 M NaOH and 0.1 M $(NH_4)_2S_2O_8$ at $4^{\circ}C$ for 10, 30, and 60 minutes. Then, Cu(OH)2 nanostructures are formed and dried at $180^{\circ}C$ for 2 h. With the drying process, the Cu(OH)2 nanostructure is transformed to CuO nanograss by dehydration reaction. CuO nanograss are grown randomly on Cu foil with the average length of 10 ${\mu}m$ and the average diameter of a 100 nm. CuO nanograsses are covered by Ag with various thicknesses from 10 to 30 nm using a thermal evaporator. Then, we immerse uncoated and Ag coated CuO nanowire samples of various oxidation times in a 0.001M methanol-based 4-mercaptopyridine (4-Mpy) in order to evaluate SERS enhancement. Raman shift and SERS enhancement are measured using a Raman spectrometer (Horiba, LabRAM ARAMIS Spectrometer) with the laser wavelength of 532 nm. Raman scattering is believed to be enhanced by the interaction between CuO nanograss and Ag island film. The gaps between Ag covered CuO nanograsses are diverse from <10 nm at the bottom to ~200 nm at the top of nanograsses. SERS signal are improved where the gaps are minimized to near 10s of nanometers. There are many spots that provide sufficiently narrow gap between the structures on randomly grown CuO nanograss surface. Then we may find optimal enhancement of Raman signal using the mapping data of average results. Fabrication of CuO nanograss based on a solution method is relatively simple and fast so this result can potentially provide a path toward cost effective fabrication of SERS substrate for sensing applications.

  • PDF

Detection of Clavibacter michiganensis subsp. michiganensis Assisted by Micro-Raman Spectroscopy under Laboratory Conditions

  • Perez, Moises Roberto Vallejo;Contreras, Hugo Ricardo Navarro;Herrera, Jesus A. Sosa;Avila, Jose Pablo Lara;Tobias, Hugo Magdaleno Ramirez;Martinez, Fernando Diaz-Barriga;Ramirez, Rogelio Flores;Vazquez, Angel Gabriel Rodriguez
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.381-392
    • /
    • 2018
  • Clavibacter michiganensis subsp. michiganesis (Cmm) is a quarantine-worthy pest in $M{\acute{e}}xico$. The implementation and validation of new technologies is necessary to reduce the time for bacterial detection in laboratory conditions and Raman spectroscopy is an ambitious technology that has all of the features needed to characterize and identify bacteria. Under controlled conditions a contagion process was induced with Cmm, the disease epidemiology was monitored. Micro-Raman spectroscopy ($532nm\;{\lambda}$ laser) technique was evaluated its performance at assisting on Cmm detection through its characteristic Raman spectrum fingerprint. Our experiment was conducted with tomato plants in a completely randomized block experimental design (13 plants ${\times}$ 4 rows). The Cmm infection was confirmed by 16S rDNA and plants showed symptoms from 48 to 72 h after inoculation, the evolution of the incidence and severity on plant population varied over time and it kept an aggregated spatial pattern. The contagion process reached 79% just 24 days after the epidemic was induced. Micro-Raman spectroscopy proved its speed, efficiency and usefulness as a non-destructive method for the preliminary detection of Cmm. Carotenoid specific bands with wavelengths at 1146 and $1510cm^{-1}$ were the distinguishable markers. Chemometric analyses showed the best performance by the implementation of PCA-LDA supervised classification algorithms applied over Raman spectrum data with 100% of performance in metrics of classifiers (sensitivity, specificity, accuracy, negative and positive predictive value) that allowed us to differentiate Cmm from other endophytic bacteria (Bacillus and Pantoea). The unsupervised KMeans algorithm showed good performance (100, 96, 98, 91 y 100%, respectively).

Detection of Iron Phases Presents in Archaeological Artifacts by Raman Spectroscopy

  • Barbosa, A.L.;Jimenez, C.;Mosquera, J.A.
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.60-67
    • /
    • 2018
  • The compounds associated with corrosion, in metallic archaeological samples of carbon steel of insular origin were evaluated to establish their degree of deterioration and structural damage against air pollution. The iron phases present in samples of archaeological artifacts were detected by Raman spectroscopy and confocal Raman microcopy. These samples mainly exhibited ing mainly ${\beta}$-FeO(OH) type goethite oxyhydroxides and small amounts of akaganeite ${\alpha}$-FeO(OH) lepidocrocite ${\gamma}$-FeO(OH) due to dominant chloride in a marine environment and non-stoichiometric oxyhydroxides Fe (II + / III +) as indicators of early corrosion. Some parts showed the presence of magnetic maghemite indicating high corrosion. ${\gamma}$-FeO(OH) is a precursor of phases associated with advanced marine corrosion. By studying its decomposition by Raman spectroscopy, it was synthesized with the following sequence: ${\gamma}-FeO(OH){\rightarrow}{\alpha}-FeO(OH)+{\gamma}-FeO(OH)$, ${\rightarrow}{\gamma}-Fe_2O_3+Fe_3O_4$. Ferric compounds provided evidence for the effect of intensity of laser on them, constituting a very useful input for the characterization of oxidation of iron in this type of artifacts. Thus, destructive analysis techniques should be avoided in addition to the use of small amounts of specimen.

Abnormality of P2O5-Na2O-MgO Glasses by Raman and Infrared Spectroscopy (라만과 적외선 분광기를 이용한 P2O5-Na2O-MgO 유리의 이상성에 관한 연구)

  • Lee, Byung-Chul;Kwon, Young-Jun;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.265-271
    • /
    • 2002
  • Density, water resistance, Raman and infrared spectroscopy were used to investigate the change of structural characteristics with the composition of phosphate galss samples made by melting method. The structural abnormality of the density and water resistance were rapidly increased and shown near the 60mol% of $P_2O_5$. This result could be explained by the structural changes owing to the strong shrinkage of glass network by the coordination of DBO(Double-Bonded Oxygen) around $Mg^{2+}$ cations. In addition, it seems that the DBOs coordinating $Mg^{2+}$ cations lose its characteristics of double bonding and resonate with other NBOs(Non-Bonding Oxygen).

Thermal Annealing Effect on the Machining Damage for the Single Crystalline Silicon (단결정 실리콘의 기계적 손상에 대한 열처리 효과)

  • 정상훈;정성민;오한석;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.770-776
    • /
    • 2003
  • #140 mesh and #600 mesh wheels were adopted to grind (111) and (100) oriented single crystalline silicon wafer and the grinding induced change of the surface integrity was investigated. For this purpose, microroughness, residual stress and phase transformation were analyzed for the ground surface. Microroughness was analyzed using AFM (Atomic Force Microscope) and crystal structure was analyzed using micro-Raman spectroscopy. The residual stress and phase transformation were also analyzed after thermal annealing in the air. As a result, microroughness of (111) wafer was larger than that of (100) wafer after grinding. It was observed using Raman spectrum that the silicon was transformed from diamond cubic Si-I to Si-III(body centered tetragonal) or Si-XII(rhombohedral). Residual stress relaxation was also shown in cavities which were produced after grinding. The thermal annealing was effective for the recovery of the silicon phase to the original phase and the residual stress relaxation.

Raman Spectroscopy of Irradiated Normoxic Polymethacrylic Acid Gel Dosimeter

  • Bong, Ji-Hye;Choi, Kyu-Seok;Yu, Soo-Chang;Kwon, Soo-Il;Cho, Yu-Ra;Park, Chae-Hee;Park, Hyung-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.625-629
    • /
    • 2011
  • A quantitative analysis of the decreasing rate of the monomer and increasing rate of the polymerization was made by monitoring radiation level increments using Raman spectroscopy within the therapeutic radiation range for a normoxic polymethacrylic acid gel dosimeter. The gel dosimeter was synthesized by stirring materials such as gelatin, distilled water, methacrylic acid, hydroquinone and tetrakis phosphonium chloride at $50^{\circ}C$, and the synthesized gel was contained in a 10- mm diameter and 32-mm high vial to conduct measurement. 24 hours after gel synthesis, it was irradiated from 0 Gy to 20 Gy by 2 Gy using a Co-60 radiotherapy unit. With use of the Cryo FE-SEM, structural changes in the 0 Gy and 10 Gy gel dosimeters were investigated. The Raman spectra were acquired using 532-nm laser as the excitation source. In accordance with fitting the changes in C-COOH stretching (801 $cm^{-1}$), C=C stretching (1639 $cm^{-1}$) and vinyl $CH_2$ stretching (3114 $cm^{-1}$) vibrational modes for monomer and $CH_2$ bending vibrational mode (1451 $cm^{-1}$) for polymer, sensitive parameter S for each mode was calculated. The values of S for monomer bands and polymer band were ranged in $6.0{\pm}2.6$ Gy and $7.2{\pm}2.3$ Gy, respectively, which shows a relatively good conformity of the decreasing rate of monomer and the increasing rate of polymerization within the range of error.

Effect of Substrate Bias Voltage on DLC Films Prepared by ECR-PECVD (ECR-PECVD 방법으로 제작된 DLC 박막의 기판 Bias 전압 효과)

  • 손영호;정우철;정재인;박노길;김인수;김기홍;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.328-334
    • /
    • 2000
  • DLC (Diamond-Like Carbon) films were deposited by ECR-PECVD (electron cyclotron resonance plasma-enhanced chemical vapor deposition) method with the variation of substrate bias voltage under the others are constant except it. We have investigated the ion bombardment effect induced by the substrate bias voltage on films during the deposition of film. The characteristics of the film were analyzed using the Dektak surface profiler, SEM, FTIR spectroscopy, Raman spectroscopy and Nano Indentation tester. FTIR spectroscopy analysis shows that the amount of dehydrogenation in films was increased with the increase of substrate bias voltage and films thickness was decreased. Raman scattering analysis shows that integrated intensity ratio $(I_D /I_G)$ of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased. From these results, it can be concluded that films deposited at this experimental have the enhanced characteristics of DLC because of the ion bombardment effect on films during the deposition of film.

  • PDF

The Study on Characteristics of a-C:H Films Deposited by ECR Plasma (전자회전공명 플라즈마를 이용한 a-C:H 박막의 특성 연구)

  • 김인수;장익훈;손영호
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.224-231
    • /
    • 2001
  • Hydrogenated amorphous carbon films were deposited by ERC-PECVD with deposition conditions, such as ECR power, gas composition of methane and hydrogen, deposition time, and substrate bias voltage. The characteristics of the film were analyzed using the AES, ERDA, FTIR. Raman spectroscopy and micro hardness tester. From the results of AES and ERDA, the elements in the deposited film were confirmed as carbon and hydrogen atoms. FTIR spectroscopy analysis shows that the atomic bonding structure of a-C:H film consisted of sp³and sp²bonding, most of which is composed of sp³bonding. The structure of the a-C:H films changed from CH₃bonding to CH₂or CH bonding as deposition time increased. We also found that the amount of dehydrogenation in a-C:H films was increased as the bias voltage increased. Raman scattering analysis shows that integrated intensity ratio (I/sub D//I/sub G/) of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased.

  • PDF

Identification of High Pressure-High Temperature Treated Gem Diamonds using a Micro-Raman Spectroscopy (고압고온 처리된 보석용 다이아몬드의 마이크로라만 분석에 의한 감별 연구)

  • Song, Oh-Sung;Kim, Jong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.817-822
    • /
    • 2006
  • Diamonds have been widely employed as polishing media for precise machining and noble substrates for microelectronics. The recent development of the split sphere press has led to the enhancement of low quality natural diamonds. Synthesized and treated diamonds are sometimes traded deceptively as high quality natural diamonds because it is hard to distinguish among these diamonds with conventional gemological characterization method. Therefore, we need to develop a new identification method that is cheap, fast, and non-destructive. We proposed using a new method of micro-Raman spectroscopy for checking the local HPHT residual stress to distinguish these diamonds from natural ones. We observe unique ~10f compressive and tensile strains at Type I and Type II diamonds after HPHT treatment. Our result implies that our proposed methods may be appropriate fur identification of the treated diamonds with appropriate reference samples.

  • PDF

CNN based Raman Spectroscopy Algorithm That is Robust to Noise and Spectral Shift (잡음과 스펙트럼 이동에 강인한 CNN 기반 라만 분광 알고리즘)

  • Park, Jae-Hyeon;Yu, Hyeong-Geun;Lee, Chang Sik;Chang, Dong Eui;Park, Dong-Jo;Nam, Hyunwoo;Park, Byeong Hwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.264-271
    • /
    • 2021
  • Raman spectroscopy is an equipment that is widely used for classifying chemicals in chemical defense operations. However, the classification performance of Raman spectrum may deteriorate due to dark current noise, background noise, spectral shift by vibration of equipment, spectral shift by pressure change, etc. In this paper, we compare the classification accuracy of various machine learning algorithms including k-nearest neighbor, decision tree, linear discriminant analysis, linear support vector machine, nonlinear support vector machine, and convolutional neural network under noisy and spectral shifted conditions. Experimental results show that convolutional neural network maintains a high classification accuracy of over 95 % despite noise and spectral shift. This implies that convolutional neural network can be an ideal classification algorithm in a real combat situation where there is a lot of noise and spectral shift.