Browse > Article
http://dx.doi.org/10.14773/cst.2018.17.2.60

Detection of Iron Phases Presents in Archaeological Artifacts by Raman Spectroscopy  

Barbosa, A.L. (University of Cartagena, Science Faculty, Chemistry Department, Laboratory of Catalysis research and New materials, LICATUC, Pharmacy Building, Campus de Zaragocilla)
Jimenez, C. (University of Cartagena, Science Faculty, Chemistry Department, Laboratory of Catalysis research and New materials, LICATUC, Pharmacy Building, Campus de Zaragocilla)
Mosquera, J.A. (University of Cartagena, Science Faculty, Chemistry Department, Laboratory of Catalysis research and New materials, LICATUC, Pharmacy Building, Campus de Zaragocilla)
Publication Information
Corrosion Science and Technology / v.17, no.2, 2018 , pp. 60-67 More about this Journal
Abstract
The compounds associated with corrosion, in metallic archaeological samples of carbon steel of insular origin were evaluated to establish their degree of deterioration and structural damage against air pollution. The iron phases present in samples of archaeological artifacts were detected by Raman spectroscopy and confocal Raman microcopy. These samples mainly exhibited ing mainly ${\beta}$-FeO(OH) type goethite oxyhydroxides and small amounts of akaganeite ${\alpha}$-FeO(OH) lepidocrocite ${\gamma}$-FeO(OH) due to dominant chloride in a marine environment and non-stoichiometric oxyhydroxides Fe (II + / III +) as indicators of early corrosion. Some parts showed the presence of magnetic maghemite indicating high corrosion. ${\gamma}$-FeO(OH) is a precursor of phases associated with advanced marine corrosion. By studying its decomposition by Raman spectroscopy, it was synthesized with the following sequence: ${\gamma}-FeO(OH){\rightarrow}{\alpha}-FeO(OH)+{\gamma}-FeO(OH)$, ${\rightarrow}{\gamma}-Fe_2O_3+Fe_3O_4$. Ferric compounds provided evidence for the effect of intensity of laser on them, constituting a very useful input for the characterization of oxidation of iron in this type of artifacts. Thus, destructive analysis techniques should be avoided in addition to the use of small amounts of specimen.
Keywords
Iron oxyhydroxides; Marine corrosion; Ferroalloys; Lepidocrocite; Metallic heritage samples;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. H. Uhlig. Uhlig's Corrosion Handbook, 2nd ed., pp. 15 - 21, John Wiley & Sons, Londres (2000).
2 T. Misawa, M. Yamashita, H. Miyuki, and H. Nagano, Corros. Sci., 14, 131 (1974).   DOI
3 Z. Wang, J. Liu, and R. Han, Corros. Sci., 67, 1 (2013).   DOI
4 T. Ishikawa, K. Yhoshinori, A.Yasukawa, and K. Kazuhiko, Corros. Sci., 40, 1239 (1998).   DOI
5 U. Schwertmann and R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, pp. 45 - 55, VCH Publishers, Inc. Weinheim, Germany (2003).
6 H. Naono and K. Nakai, J. Colloid Interf. Sci, 128, 146 (1989).   DOI
7 B. Prelot, F. Villieras., M. Pelletier, G. Gerard, F. Gaboriaud, J. J. Ehrhardt, J. Perrone, M. Fedoroff, J. Jeanjean, G. Lefevre, L. Mazerolles, J. L. Pastol, J. C. Rouchaud, and C. Lindecker, J. Colloid Interf. Sci., 261, 244 (2003).   DOI
8 U. Schwertmann and R. M. Taylor, Clay. Clay Miner., 20, 159 (1972).   DOI
9 A. U. Gehring and A. M. Hofmeister, Clay. Clay Miner., 42, 409 (1994).   DOI
10 K. M. Peterson, P. J. Heaney, and J. E. Post, Chem. Geol., 444, 27 (2016).   DOI
11 E. Matijevic, Chem. Mater. 5, 412 (1993).   DOI
12 A. Remazeilles and P. Refait Corros. Sci., 49, 844 (2007).   DOI
13 A. L. Barbosa, E. Block, and J. J. Rouquerol, Proc. 12th Congreso Iberoamericano de Catalisis, p. 40, Fisocat, Chile (2010).
14 J. Gonzalez-Sanchez, D. Arano-Recio, F. Bernes, and H. Mato, Environmental Degradation of Infrastructure and Cultural Heritage in Coastal Tropical Climate, 1st ed., pp. 183-200, Transworld Research Network, India (2009).
15 D. Neff, Corros. Sci., 47, 515 (2005).   DOI
16 R. Altobelli, I. Costa, and D. L Araujo de Faria, Mat. Res., 6, 389 (2003).   DOI
17 T. Gao, H. Fjellvag, and P. Norby, J. Phys. Chem. B, 112, 9400 (2008).   DOI
18 F. Dubois, C. Mendibide, T. Pagnier, F. Perrard, and C. Duretref, Corros. Sci., 50, 3401 (2008).   DOI
19 M. H. Sousa, F. A. Tourinho, J. Depeyrot, G. J O. de Silva, and M. C. Lara, J. Phys. Chem. B, 105, 1168 (2001).   DOI
20 N. Xianghui, L. Xiaogang, D. Cuiwei, H. Yizhong, and D. He, J. Raman Spectrosc., 40, 76 (2009).   DOI
21 M. Veneranda, J. Aramendia, L. Bellot-Gurletb, P. Colomban, K. Castro, and J. M. Madariaga, Corros. Sci., 133, 68 (2018).   DOI
22 Sei J. Oh, D. C. Cook, and H. E. Townsend, Corros. Sci., 4, 1687 (1999).
23 S, Gao, B. Brown, D. Young, and M. Singer, Corros. Sci., 135, 167 (2018).   DOI
24 V. Klimas, K. Mazeika, V. Jasulaitiene, and A. Jagminas, J. Fluorine Chem., 170, 1 (2015).   DOI
25 S. Wijesinghe and T. Zixi, Corros. Sci. Tech., 16, 273 (2017).