• Title/Summary/Keyword: Raman Spectroscopy

Search Result 1,152, Processing Time 0.047 seconds

Metal-induced Crystallization of Amorphous Ge on Glass Synthesized by Combination of PIII&D and HIPIMS Process

  • Jeon, Jun-Hong;Kim, Eun-Kyeom;Choi, Jin-Young;Park, Won-Woong;Moon, Sun-Woo;Lim, Sang-Ho;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.144-144
    • /
    • 2012
  • 최근 폴리머를 기판으로 하는 고속 Flexible TFT (Thin film transistor)나 고효율의 박막 태양전지(Thin film solar cell)를 실현시키기 위해 낮은 비저항(resistivity)을 가지며, 높은 홀 속도(carrier hall mobility)와 긴 이동거리를 가지는 다결정 반도체 박막(poly-crystalline semiconductor thin film)을 만들고자 하고 있다. 지금까지 다결정 박막 반도체를 만들기 위해서는 비교적 높은 온도에서 장시간의 열처리가 필요했으며, 이는 폴리머 기판의 문제점을 야기시킬 뿐 아니라 공정시간이 길다는 단점이 있었다. 이에 반도체 박막의 재결정화 온도를 낮추어 주는 metal (Al, Ni, Co, Cu, Ag, Pd, etc.)을 이용하여 결정화시키는 방법(MIC)이 많이 연구되어지고 있지만, 이 또한 재결정화가 이루어진 반도체 박막 안에 잔류 금속(residual metal)이 존재하게 되어 비저항을 높이고, 홀 속도와 이동거리를 감소시키는 단점이 있다. 이에 본 실험은, 종래의 MIC 결정화 방법에서 이용되어진 금속 증착막을 이용하는 대신, HIPIMS (High power impulse magnetron sputtering)와 PIII&D (Plasma immersion ion implantation and deposition) 공정을 복합시킨 방법으로 적은 양의 알루미늄을 이온주입함으로써 재결정화 온도를 낮추었을 뿐 아니라, 잔류하는 금속의 양도 매우 적은 다결정 반도체 박막을 만들 수 있었다. 분석 장비로는 박막의 결정화도를 측정하기 위해 GIXRD (Glazing incident x-ray diffraction analysis)와 Raman 분광분석법을 사용하였고, 잔류하는 금속의 양과 화학적 결합 상태를 알아보기 위해 XPS (X-ray photoelectron spectroscopy)를 통한 분석을 하였다. 또한, 표면 상태와 막의 성장 상태를 확인하기 위하여 HRTEM(High resolution transmission electron microscopy)를 통하여 관찰하였다.

  • PDF

PIII&D (Plasma immersion ion implantation & deposition)를 이용한 a-Ge (amorphous-Germanium) Thin Film의 결정성장

  • Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong;Lim, Sang-Ho;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.153-153
    • /
    • 2011
  • 유리나 폴리머를 기판으로 하는 TFT(Thin film transistor), solar cell에서는 낮은 공정 온도에서($200{\sim}500^{\circ}C$) amorphous semiconductor thin film을 poly-crystal semiconductor thin film으로 결정화 시키는 기술이 매우 중요하게 대두 되고 있다. Ge은 Si에 비해 높은 carrier mobility와 낮은 녹는점을 가지므로, 비 저항이 낮을 뿐만 아니라 더 낮은 온도에서 결정화 할 수 있다. 하지만 일반적으로 쓰이는 Ge의 결정화 방법은 비교적 높은 열처리 온도를 필요로 하거나, 결정화된 원소에 남아있는 metal이 불순물 역할을 한다는 문제점, 그리고 불균일한 결정크기를 만든다는 단점이 있었다. 그 중에서도 현재 가장 많이 쓰이고 있는 MIC, MILC는 metal과 a-Ge이 접촉되는 interface나, grain boundary diffusion에 의해 핵 생성이 일어나고, 결정이 성장하는 메커니즘을 가지고 있으므로 단순 증착과 열처리 만으로는 앞서 말한 단점을 극복하는데 한계를 가지고 있다. 이에 PIII&D 장비를 이용하면, 이온 주입된 원소들이 모재와 반응 할 수 있는 표면적이 커짐으로 핵 생성을 조절 할 수 있을 뿐만 아니라, 이온 주입 시 발생하는 self annealing effect로 결정 크기까지도 조절할 수 있다. 또한 이러한 모든 process가 한 진공 장비 내에서 이루어지므로 장비의 단순화와, 공정간 단계별로 발생하는 불순물과 표면산화를 막을 수 있으므로 절연체 위에 저항이 낮고, hall mobility가 높은 poly-crystalline Ge thin film을 만들 수 있다. 본 연구에서는, 주로 핵 생성과정에서 seed를 만드는 이온주입 조건과, 결정 성장이 일어나는 증착 조건에 따라서 Ge의 결정방향과 크기가 많은 차이를 보이는데, 이는 HR-XRD(High resolution X-ray Diffractometer)와 Raman spectroscopy를 이용하여 측정 하였으며, SEM과 AFM으로 결정의 크기와 표면 거칠기를 측정하였다. 또한 Hall effect measurement를 통해 poly-crystalline thin film 의 저항과 hall mobility를 측정하였다.

  • PDF

Super-growth of Carbon Nanotubes by O2-assisted Microwave Plasma Chemical Vapor Deposition

  • Park, Sang-Eun;Kim, Yu-Seok;Kim, Seong-Hwan;Lee, Su-Il;Jo, Ju-Mi;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.387-387
    • /
    • 2011
  • 탄소 나노튜브(Carbon nanotubes, CNTs)는 육각형 모양의 구조로서 오직 탄소만으로 이루어진 소재이다. CNT는 열전도율이 다이아몬드보다 약 2배 우수하고, 전기 전도는 구리에 비해 1,000배 높으며, 강도는 강철보다 100배나 뛰어나다. CNT의 이러한 특성을 이용한 트랜지스터, 태양전지, 가스 검출을 위한 고감도 센서, 나노 섬유, 고분자-탄소나노튜브 고기능 복합체 등 많은 분야에서 연구가 활발히 진행되고 있다. 또한 수직으로 성장된 탄소 나노튜브는 일반적인 재료에서는 보기 드물게 힘들게 직경이 나노 크기인 반면 길이는 수 mm까지 합성 되기 때문에 앞서 언급한 분야로의 활용이 더욱 유리하며, 그 중에서도 나노 섬유, 나노 복합체로서의 활용에 극히 유용하다. 이러한 이유로 수직 배열된 CNT 합성에 많은 연구가 집중 되고 있다. 여러 합성 방법 중 성장 변수를 비교적 용이하게 조절 가능한 열 화학 기상 증착법(Thermal chemical vapor deposition, TCVD)을 이용하여 수직 배열된 수 mm의 CNT를 합성한 연구 결과들이 보고된 바 있다. 그러나 앞선 연구결과들은 CNT의 성장속도가 느릴 뿐만 아니라 합성 시간이 길어질수록 성장 속도가 감소하는 경향을 보였다. 반면, 마이크로웨이브 플라즈마 화학 기상 증착법(Microwave plasma CVD, MPCVD)은 기존의 다른 TCVD에 비해 낮은 온도에서 CNT를 합성할 수 있는 장점을 가지며, 고출력(~600 W 이상)의 플라즈마를 사용하기 때문에 성장률이 높고 고밀도의 CNT 합성이 가능하다. 본 연구에서는 철을 촉매금속으로 사용하고 MPCVD을 이용하여 얇은 다중벽 CNT를 합성하였다. 철은 직류 마그네트론 스퍼터(D.C magnetron sputter)를 사용하여 증착하였다. 합성시 가스는 탄소 공급원인 메탄($CH_4$)과 함께 플라즈마 공급원인 수소($H_2$)를 사용하였다. 또한 산소($O_2$)의 주입 여부에 따른 CNT의 성장 속도와 성장 길이를 비교하였다. 산소를 주입하였을 때, CNT의 성장 속도와 길이 모두 크게 향상됨을 확인 할 수 있었다. 이는 촉매금속 표면의 비정질 탄소의 흡착으로 인해 활성화된 촉매금속의 반응시간을 증가시키기 때문이다. 성장된 CNT는 주사전자 현미경(Scanning Electron Microscopy, SEM)과 라만 분광법(Raman spectroscopy)을 통해 표면형상과 결정성을 분석하였다.

  • PDF

Effect of H2 on The Diamond Film Growth Mechanism by HFCVD Method Using CH3OH/H2O (HFCVD법에 의한 H2 다이아몬드 박막 제조에 수소가 미치는 영향)

  • Lee Kwon-Jai;Shin Jae-Soo;Kwon Ki-Hong;Lee Min-Soo;Koh Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.835-839
    • /
    • 2004
  • The diamond thin films was deposited on Si(100) substrate by Hot Filament Chemical Vapor Deposition (HFCVD) method using supplied the $CH_{3}OH/H_{2}O$ mixtured gas with excess H_{2} gas. The role of hydrogen ion as the growth mechanism of the diamond deposit was examined and compared the $CH_{3}OH/H_{2}O$ with the $CH_4/H_2$. Pressures in the range of $1.1\sim290{\times}10^2$ Pa were applied and using $3.4\sim4.4$ kw power. It was investigated by Scanning Electron Microscopy(SEM) and Raman spectroscopy The H ion was etching the graphite and restrained from $sp^3\;to\;sp^2$. But excess $H_2$ gas was not helped diamond deposit using $CH_{3}OH/H_{2}O$ mixtured gas. It was shown that the role of hydrogen ion of deposited diamond films using $CH_{3}OH/H_{2}O$ was different from $CH_4/H_2$.

Fabrication of Fe3O4/Fe/Graphene nanocomposite powder by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties (액중 전기선 폭발법을 이용한 Fe3O4/Fe/그래핀 나노복합체 분말의 제조 및 전기화학적 특성)

  • Kim, Yoo-Young;Choi, Ji-Seub;Lee, Hoi-Jin;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.308-314
    • /
    • 2017
  • $Fe_3O_4$/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, $Fe_3O_4$/Fe nanocomposites are fabricated under the same conditions. The $Fe_3O_4$/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The $Fe_3O_4$/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the $Fe_3O_4$/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for $Fe_3O_4$/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.

A Study on Solid-Phase Epitaxy Emitter in Silicon Solar Cells (고상 성장법을 이용한 실리콘 태양전지 에미터 형성 연구)

  • Kim, Hyunho;Ji, Kwang-Sun;Bae, Soohyun;Lee, Kyung Dong;Kim, Seongtak;Park, Hyomin;Lee, Heon-Min;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.80-84
    • /
    • 2015
  • We suggest new emitter formation method using solid-phase epitaxy (SPE); solid-phase epitaxy emitter (SEE). This method expect simplification and cost reduction of process compared with furnace process (POCl3 or BBr3). The solid-phase epitaxy emitter (SEE) deposited a-Si:H layer by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) on substrate (c-Si), then thin layer growth solid-phase epitaxy (SPE) using rapid thermal process (RTP). This is possible in various emitter profile formation through dopant gas ($PH_3$) control at deposited a-Si:H layer. We fabricated solar cell to apply solid-phase epitaxy emitter (SEE). Its performance have an effect on crystallinity of phase transition layer (a-Si to c-Si). We confirmed crystallinity of this with a-Si:H layer thickness and annealing temperature by using raman spectroscopy, spectroscopic ellipsometry and transmission electron microscope. The crystallinity is excellent as the thickness of a-Si layer is thin (~50 nm) and annealing temperature is high (<$900^{\circ}C$). We fabricated a 16.7% solid-phase epitaxy emitter (SEE) cell. We anticipate its performance improvement applying thin tunnel oxide (<2nm).

Biaxial flexural strength and phase transformation of Ce-TZP/$Al_2O_3$ and Y-TZP core materials after thermocycling and mechanical loading

  • Gungor, Merve Bankoglu;Yilmaz, Handan;Aydin, Cemal;Nemli, Secil Karakoca;Bal, Bilge Turhan;Tiras, Tulay
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.224-232
    • /
    • 2014
  • PURPOSE. The purpose of the present study was to evaluate the effect of thermocycling and mechanical loading on the biaxial flexural strength and the phase transformation of one Ce-TZP/$Al_2O_3$ and two Y-TZP core materials. MATERIALS AND METHODS. Thirty disc-shaped specimens were obtained from each material. The specimens were randomly divided into three groups (control, thermocycled, and mechanically loaded). Thermocycling was subjected in distilled water for 10000 cycles. Mechanical loading was subjected with 200 N loads at a frequency of 2 Hz for 100000 times. The mean biaxial flexural strength and phase transformation of the specimens were tested. The Weibull modulus, characteristic strength, 10%, 5% and 1% probabilities of failure were calculated using the biaxial flexural strength data. RESULTS. The characteristic strengths of Ce-TZP/$Al_2O_3$ specimens were significantly higher in all groups compared with the other tested materials (P<.001). Statistical results of X-ray diffraction showed that thermocycling and mechanical loading did not affect the monoclinic phase content of the materials. According to Raman spectroscopy results, at the same point and the same material, mechanical loading significantly affected the phase fraction of all materials (P<.05). CONCLUSION. It was concluded that thermocycling and mechanical loading did not show negative effect on the mean biaxial strength of the tested materials.

Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

  • Dong, Yuming;Wu, Lina;Wang, Guangli;Zhao, Hui;Jiang, Pingping;Feng, Cuiyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3227-3232
    • /
    • 2013
  • A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state.

Salinity Effect on the Equilibria and Kinetics of the Formation of CO2 and R-134a Gas Hydrates in Seawater

  • Johanna, Lianna;Kim, A Ram;Jeong, Guk;Lee, Jea-Keun;Lee, Tae Yun;Lim, Jun-Heok;Won, Yong Sun
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.382-387
    • /
    • 2016
  • Gas hydrates are crystalline solids in which gas molecules (guests) are trapped in water cavities (hosts) that are composed of hydrogen-bonded water molecules. During the formation of gas hydrates in seawater, the equilibria and kinetics are then affected by salinity. In this study, the effects of salinity on the equilibria of $CO_2$ and R134-a gas hydrates has been investigated by tracing the changes of operating temperature and pressure. Increasing the salinity by 1.75% led to a drop in the equilibrium temperature of about $2^{\circ}C$ for $CO_2$ gas hydrate and $0.38^{\circ}C$ for R-134a gas hydrate at constant equilibrium pressure; in other words, there were rises in the equilibrium pressure of about 1 bar and 0.25 bar at constant equilibrium temperature, respectively. The kinetics of gas hydrate formation have also been investigated by time-resolved in-situ Raman spectroscopy; the results demonstrate that the increase of salinity delayed the formation of both $CO_2$ and R134-a gas hydrates. Therefore, various ions in seawater can play roles of inhibitors for gas hydrate formation in terms of both equilibrium and kinetics.

Characterization of ion-conductive Behaviors for Crystalline/Amorphous Solid Polyether Electrolytes Using Supercritical $CO_2$ Fluid (초임계 이산화탄소 유체를 이용한 결정성/무정형 폴리에테르 전해질의 이온전도특성 연구)

  • ;Y. Tominaga;S. Asai;M. Sumita
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.785-791
    • /
    • 2002
  • The effect of the supercritical carbon dioxide (sc$CO_2$) on ion-conductive behaviors for polyether electrolytes based on, both poly (ethylene oxide) (PEO) and poly [oligo (oxyethylene glycol) methacrylate] (PMEO) with lithium triflate, LiCF$_3$SO$_3$, has been investigated. In particular, the present research is a new concept for improving the ionic conductivity of polyether electrolytes. The maximum ionic conductivity ($\sigma$$_{max}$) at room temperature of the PEO electrolyte was more than 100 times higher, and the $\sigma$$_{max}$ at 9$0^{\circ}C$ of the PMEO electrolyte was 30 times improved by the se$CO_2$ treatment, respectively. It was revealed that the penetration of $CO_2$ molecules into the polymer matrix causes the increase of carrier ions by ion-dispersion effect and the decrease of glass transition temperature (T$_{g}$) by plasticizing effect that results in the improvement of the ion transport behaviors.viors.