• Title/Summary/Keyword: Ralstonia Solanacearum

Search Result 116, Processing Time 0.021 seconds

Characterization and Expression of Antibacterial Protein Gene, Nuecin (곤충세포주에서 누에신 단백질의 발현 및 성상구명)

  • 윤은영;구태원;황재삼;김상현;강석우;김근영;진병래
    • Journal of Sericultural and Entomological Science
    • /
    • v.44 no.2
    • /
    • pp.64-68
    • /
    • 2002
  • The antibacterial protein gene, nuecin was expressed in Sf9 cells using baculovirus expression vector system (BEVS). The antibactetial activity of mature nuecin against Pectobacterium carotovorum subsp. carotovorum, Ralstonia solanacearum and Pseudomonas tolaasii was significantly high, demonstrating that nuecin had a wider antibacterial spectrum on gram negative and positive bacteria. The result appears to be superior to other antibacterial peptide, attacin. The nuecin was purified by SP-sepharose and Mono Q HR ion-exchange chromatography, and then by Superdex 200 HR 10/30 column. The purified nuecin is quite stable at 80$\^{C}$ and 100$\^{C}$ for several hours of incubation and in a wide pH range (pH 2-12).

Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato

  • Bae, Ju Young;Wu, Jing;Lee, Hyoung Ju;Jo, Eun Jeong;Murugaiyan, Senthilkumar;Chung, Eunsook;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1613-1620
    • /
    • 2012
  • Bacterial wilt caused by Ralstonia solanacearum is a devastating disease of many economically important crops. Since there is no promising control strategy for bacterial wilt, phage therapy could be adopted using virulent phages. We used phage PE204 as a model lytic bacteriophage to investigate its biocontrol potential for bacterial wilt on tomato plants. The phage PE204 has a short-tailed icosahedral structure and double-stranded DNA genome similar to that of the members of Podoviridae. PE204 is stable under a wide range of temperature and pH, and is also stable in the presence of the surfactant Silwet L-77. An artificial soil microcosm (ASM) to study phage stability in soil was adopted to investigate phage viability under a controlled system. Whereas phage showed less stability under elevated temperature in the ASM, the presence of host bacteria helped to maintain a stable phage population. Simultaneous treatment of phage PE204 at $10^8$ PFU/ml with R. solanacearum on tomato rhizosphere completely inhibited bacterial wilt occurrence, and amendment of Silwet L-77 at 0.1% to the phage suspension did not impair the disease control activity of PE204. The biocontrol activities of phage PE204 application onto tomato rhizosphere before or after R. solanacearum inoculation were also investigated. Whereas pretreatment with the phage was not effective in the control of bacterial wilt, post-treatment of PE204 delayed bacterial wilt development. Our results suggested that appropriate application of lytic phages to the plant root system with a surfactant such as Silwet L-77 could be used to control the bacterial wilt of crops.

Induced Systemic Resistance by Bacillus vallismortis EXTN-1 Suppressed Bacterial Wilt in Tomato Caused by Ralstonia solanacearum

  • Park, Kyung-Seok;Paul, Diby;Kim, Yong-Ki;Nam, Ki-Woong;Lee, Young-Kee;Choi, Hyo-Won;Lee, Sang-Yeob
    • The Plant Pathology Journal
    • /
    • v.23 no.1
    • /
    • pp.22-25
    • /
    • 2007
  • Biocontrol activity of five strains of selected rhizo-bacteria were tested in tomato against bacterial wilt caused by Ralstonia solanacearum. After root bacterization the plants were grown in a perlite-hydroponic system. Upon challenge inoculation with the pathogen, all of the rhizobacterial strains efficiently suppressed the bacterial wilt in tomato in various rates, at maximum by the strain, Bacillus vallismortis strain EXTN-1. While the percent of infected plants in the non-bacterized control plants were 95%, it was only 65% in plants pre-treated with EXTN-1. It was also demonstrated that the movement of R. solanacearum within the stem was significantly hampered when the plants were root bacterized. As EXTN-1 has no antagonistic properties against R. solanacearum, the bacterial wilt was probably suppressed by a mechanism other than antibiosis. Previously, the strain had been proven to produce an efficient elicitor for inducing systemic resistance in many crops. As the present study confirmed that EXTN-1 has the ability for reducing the pathogen spread in tomato, the strain could be effectively used as a potential biocontrol agent against bacterial wilt.

Application of Disinfection Models on the Plasma Process (플라즈마 공정에 대한 소독 모델 적용)

  • Back, Sang-Eun;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.695-704
    • /
    • 2012
  • The application of disinfection models on the plasma process was investigated. Nine empirical models were used to find an optimum model. The variation of parameters in model according to the operating conditions (first voltage, second voltage, air flow rate, pH) were investigated in order to explain the disinfection model. In this experiment, the DBD (dielectric barrier discharge) plasma reactor was used to inactivate Ralstonia Solanacearum which cause wilt in tomato plantation. Optimum disinfection models were chosen among the nine models by the application of statistical SSE (sum of squared error), RMSE (root mean sum of squared error), $r^2$ values on the experimental data using the GInaFiT software in Microsoft Excel. The optimum model was shown as Weibull+talil model followed by Log-linear+ Shoulder+Tail model. Two models were applied to the experimental data according to the variation of the operating conditions. In Weibull+talil model, Log10($N_o$), Log10($N_{res}$), ${\delta}$ and p values were examined. And in Log-linear+Shoulder+Tail model, the Log10($N_o$), Log10($N_{res}$), $k_{max}$, Sl values were calculated and examined.

Survey of Disease Occurrence in Tobacco Plants of the Kyeongbuk Area during 2005-2006 (2005~2006 년도 경북지역 담배 병 발생상황)

  • Yi, Young-Keun;Yim, Young-Gu
    • Research in Plant Disease
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Major diseases of tobacco and farmer's control practices were surveyed in the Kyeongbuk province area from 2005 to 2006. Mosaic caused by potato virus Y and bacterial wilt caused by Ralstonia solanacearum were most severe during the harvest season. Compared with the disease occurrence of ten years ago, the damage by tobacco mosaic virus reduced but bacterial wilt increased. These changes in the disease occurrences may probably be due to releasing the resistant tobacco cultivar to the mosaic virus but susceptible to the bacterial wilt pathogen. More than thirty percentage of the farmers have misused fungicides and also have applied the continuous mono-cropping system for more than ten years, and have chosen the incorrect crops for the rotation.

Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan

  • Zheng, Yuanxian;Wang, Jiming;Zhao, Wenlong;Cai, Xianjie;Xu, Yinlian;Chen, Xiaolong;Yang, Min;Huang, Feiyan;Yu, Lei;He, Yuansheng
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.203-211
    • /
    • 2022
  • Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.

Changes in the Composition and Microbial Community of the Pepper Rhizosphere in Field with Bacterial Wilt Disease

  • Hyun Gi, Kong;Mee Kyung, Sang;Ju Hee, An;Songhwa, Kim;Yong Ju, Jin;Jaekyeong, Song
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.692-699
    • /
    • 2022
  • Bacterial wilt caused by Ralstonia solanacearum is considered one of the most harmful diseases of pepper plants. Recently, research on plant disease control through the rhizosphere microbiome has been actively conducted. In this study, the relationship with disease occurrence between the neighboring plant confirmed by analyzing the physicochemical properties of the rhizosphere soil and changes in the microbial community. The results confirmed that the microbial community changes significantly depending on the organic matters, P2O5, and clay in the soil. Despite significant differences in microbial communities according to soil composition, Actinobacteriota at the phylum level was higher in healthy plant rhizosphere (mean of relative abundance, D: 8.05 ± 1.13; H: 10.06 ± 1.59). These results suggest that Actinobacteriota may be associated with bacterial wilt disease. In this study, we present basic information for constructing of healthy soil in the future by presenting the major microbial groups that can suppress bacterial wilt.

Control of Tomato Wilt Disease by Amending pH of Nutrient Solution in Hydroponic System (토마토 수경재배에서 배양액의 pH 조절에 의한 풋마름병 방제)

  • Lee Jung-Sup;Choi Ji-Ho;Seo Sang-Tae;Han Kyoung-Suk;Park Jong-Han;Jang Han-Ik
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.193-197
    • /
    • 2005
  • The effect of pH on the survival of R. solanacearum and its transmission via roots of tomato in hydroponic culture were studied in laboratory and greenhouse. In laboratory experiment, R. solanacearum could not survive for 24h in nutrient solution with pH of $4{\cdot}0;or\;4{\cdot}5$, while 1, 14, 51 and $62\%$ of inoculum survived at pH $5{\cdot}0,\;5{\cdot}6\;and\;6{\cdot}5$, respectively. When tomato plants were inoculated with R. solanacearum through wounds on the stems, the bacteria moved downward from the inoculation site to the roots and infectious bacteria were released from the roots into the nutrient solution. Of two pH regimes tested in greenhouse nutrient-film technique(NFT) culture, the R. solanacearum population was significantly lower in pH 5.0 than in pH 6.5 in most sampling data. In treatments in which R. solanacearum was introduced by transplanting two root-inoculated plants, significantly move plants developed wilt at pH $6{\cdot}5$(34 out of 48 plants) than at pH 5.0(11 out of 48 plants). In addition, when the bacterium was introduced by transplanting two stem-inoculated plants at pH $6{\cdot}5$, seven out of 24 plants developed wilt.