• Title/Summary/Keyword: Rainfall.

Search Result 6,185, Processing Time 0.033 seconds

Ammonia Volatilization from Coated Urea in Paddy Soil of Transplanting Rice Culture (벼 이앙재배에서 피복요소 시용에 따른 암모니아 휘산)

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Kang, Ui-Gum;Son, Il-Soo;Yun, Eul-Soo;Park, Sung-Tae;Lee, Suk-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.321-327
    • /
    • 2005
  • Ammonia ($NH_3$) volatilization was measured from latex coated urea (LCU) and normal urea treated rice paddy under transplanting rice culture in Milyang in 2002 and 2003. The $NH_3$ volatilization from incubation experiment was significantly related with ammonium-N ($NH_4-N$) concentration and pH in the surface water. The correlation coefficients of $NH_3$ volatilization compared to the $NH_4-N$ and pH in surface water were significantly higher in urea than LCU. The $NH_3$ volatilization from both urea and LCU treatments was not increased in surface water of pH less than 8.0, while $NH_3$ volatilization increased significantly in the surface water of pH over 8.0. The results in the field experiment indicated that $NH_3$ volatilization after top-dressing of urea increased rapidly with increasing $NH_4-N$ concentration in soil and floodwater, and highest from 7 to 10 days after top-dressing. The amount of $NH_3$ volatilized from urea treatment was in the range of $4.9-8.4kg\;N\;ha^{-1}$. The variations of $NH_3$ volatilization in 2002 and 2003 were caused by changed N dynamics due to the different weather conditions such as rainfall and temperature. The amount of $NH_3$ volatilized from LCU treatment was significantly reduced compared to that of urea. The reason for the reduced $NH_3$ volatilization in LCU treatment would be due to the lower concentration of $NH_4-N$ in floodwater. The amount of $NH_3$ volatilized from LCU treated rice paddy was in the range of $1.2-1.8kg\;N\;ha^{-1}$, and the loss of N by ammonia volatilization was 2.0-2.3%. Loss of N by $NH_3$ volatilization with LCU treatment was reduced by 75-79% comparing to urea treatment.

Characterization of Weed Occurrence in Major Horticultural Crops - III. Phenological Aspects of Major Weeds (원예경작지(園藝耕作地)에서의 잡초발생(雜草發生) 특성에 관(關)한 연구(硏究) - III. 주요잡초종(主要雜草種)의 발생계절성(發生季節性))

  • Woo, I.S.;Pyon, J.Y.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.9 no.2
    • /
    • pp.130-140
    • /
    • 1989
  • 1) Dormancy brocken weed seeds were planted in soil at 15 days interval from June to December in 1986 and 1987 and test of normality and normal distribution curve were made to determine seasonal distribution characteristics of weed emergence in fields. Monthly emergence distribution pattern of each species can be concluded as following normal distribution equations. E. crusgalli $y={\frac{1}{2.52{\sqrt{2{\pi}}}}}e^{-{\frac{(x-10.057)^2}{12.7}}}$ E. indica $y={\frac{1}{2.17{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.16)^2}{9.45}}}$ A. lividus $y={\frac{1}{7.74{\sqrt{2{\pi}}}}}e^{-{\frac{(x-10.06)^2}{15.46}}}$ S. nigrum $y={\frac{1}{2.7{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.695)^2}{14.58}}}$ C. busrsa-pastoris $y={\frac{1}{2.83{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.02)^2}{16.02}}}$ D. sanguinalis $y={\frac{1}{2.8{\sqrt{2{\pi}}}}}e^{-{\frac{(x-8.58)^2}{15.67}}}$ S. viridis $y={\frac{1}{2.72{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.36)^2}{14.8}}}$ C. album $y={\frac{1}{2.596{\sqrt{2{\pi}}}}}e^{-{\frac{(x-8.07)^2}{13.48}}}$ P. oleraeda $y={\frac{1}{2.45{\sqrt{2{\pi}}}}}e^{-{\frac{(x-10.83)^2}{12.01}}}$ 2) Emergence peak period of weed species tested were from the end of May to early August and yearly variation of emergence was observed in E. crus-galli, S. viridis, S, nigrum, and P. oleracea and this fact may more related to rainfall pattern rather than temperature.

  • PDF

Characteristics of stormwter runoff from highways with unit traffic volume (고속도로 자동차 통행량에 따른 강우유출수 유출 특성 분석)

  • Choi, Jiyeon;Hong, Jungsun;Kang, Heeman;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • This study was conducted to analyze the runoff characteristics of the highway depending on the number of vehicles and to provide the installation proposal of an NPS pollution reduction facility. There were a total of 5 monitoring sites used for the study namely, Gyeongbu, Seohaean, Honam and Tongyeoung Dageon highway. Monitoring events started from 2006 until 2015 having a total of 44 storm events. According to monitoring statistics, the average antecedent dry days (ADD) and rainfall was 6.2 days and 19.2 mm, respectively. The Gyeongbu Highway (H-4) was recorded having the highest Average Daily Traffic and Catchment Area (ADT/CA) with $49.4car/day{\cdot}m^2$ while other site were less than $10car/day{\cdot}m^2$. The average concentration of the NPS pollutants generated from monitoring sites were 63.5 mg/L(TSS), 24.9 mg/L(BOD), 3.35 mg/L(TN), 0.63 mg/L(TP) and 298 ug/L(Total Zn). This exhibited lower values in comparison to the remarks of highway related runoff EMC values published in Korea. Moreover, through the results of the correlation analysis between the contaminant concentration and ADT/CA, $R^2$ value of SS showed the highest correlation with 585. Through the correlation equation between ADT/CA and EMC of TSS, when there is 73.7 mg/L of TSS EMC found from a domestic highway, ADT/CA ratio is normally $13car/day{\cdot}m^2$. Therefore, in a case of more than 13 cars passing through a certain area, the area can be considered and present as the point of generation of nonpoint source pollutants. Also, in this study, since it considered a unit area ADT indicated in previous studies, it was determined that it has a high applicability and utilization in generalized units than conventional study which were conventionally done.

Effect of High Temperature, Daylength, and Reduced Solar Radiation on Potato Growth and Yield (고온, 일장 및 저일사 조건이 감자 생육 및 수량에 미치는 영향)

  • Kim, Yean-Uk;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.2
    • /
    • pp.74-87
    • /
    • 2016
  • Potato phenology, growth, and yield are projected to be highly affected by global warming in the future. The objective of this study was to examine the responses of potato growth and yield to environmental elements like temperature, solar radiation, and daylength. Planting date experiments under open field condition were conducted using three cultivars differing in maturity group (Irish Cobbler and Superior as early; Atlantic as mid-late maturing) at eight different planting dates. In addition, elevated temperature experiment was conducted in four plastic houses controlled to target temperatures of ambient temperature (AT), $AT+1.5^{\circ}C$, $AT+3^{\circ}C$, and $AT+5^{\circ}C$ using cv. Superior. Tuber initiation onset was found to be hastened curve-linearly with increasing temperature, showing optimum temperature around $22-24^{\circ}C$, while delayed by longer photoperiod and lower solar radiation in Superior and Atlantic. In the planting date experiments where the average temperature is near optimal and solar radiation, rainfall, pest, and disease are not limiting factor for tuber yield, the most important determinant was growth duration, which is limited by the beginning of rainy season in summer and frost in the late fall. Yield tended to increase along with delayed tuber initiation. Within the optimum temperature range ($17^{\circ}-22^{\circ}C$), larger diurnal range of temperature increased the tuber yield. In an elevated temperature treatment of $AT+5.0^{\circ}C$, plants failed to form tubers as affected by high temperature, low irradiance, and long daylength. Tuber number at early growth stage was reduced by higher temperature, resulting in the decrease of assimilates allocated to tuber and the reduction of average tuber weight. Stem growth was enhanced by elevated temperature at the expense of tuber growth. Consequently, tuber yield decreased with elevated temperature above ambient and drop to almost nil at $AT+5.0^{\circ}C$.

Analysis of Effect of Environment on Growth and Yield of Autumn Kimchi Cabbage in Jeonnam Province using Big Data (빅데이터를 활용한 재배환경이 전라남도 지방 가을배추의 생육과 수량에 미치는 영향 분석)

  • Wi, Seung Hwan;Lee, Hee Ju;Yu, In Ho;Jang, YoonAh;Yeo, Kyung-Hwan;An, Sewoong;Lee, Jin Hyoung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.183-193
    • /
    • 2020
  • This study was conducted to evaluate the effect of environment factors on the growth of autumn season cultivation of Kimchi cabbage using the big data in terms of public open data(weather, soil information, and growth of crop, etc.). The growth data and the environment data such as temperature, daylength, and rainfall from 2010 to 2019 were collected. As a result of composing the correlation matrix, the height and leaf number showed high correlation in growing degree days(GDDs) and daylength, and the yield showed negative correlation in growing degree days and the concentration of clay. GDDs and daylength explained about 89% and 84% of variation in height, respectively. These two environmental factors also explained about 85% and 79% of variation in leaf numbers, respectively. In contrast, the coefficient of determination was low for yield when GDDs and concentration of clay was used. The outcome of regional statistical analysis indicated that relationship between yield and sum of sand and silt were high in Haenam and Jindo areas. Hierarchical cluster analysis, which was performed to verify the association of yield, GDDs, and concentration of clay, showed that Haenam and Jindo were clustered together. Although GDDs and yield vary by year and region, and there are regions with similar concentration of clays, observation data are grouped as the result. These suggests that GDDs and soil texture are expected to be related to yield. The cluster analysis results can be used for further data analysis and agricultural policy establishment.

Estimation of Soil Loss Due to Cropland Increase in Hoeryeung, Northeast Korea (북한 회령지역의 농경지 변화에 따른 토양침식 추정)

  • Lee, Min-Boo;Kim, Nam-Shin;Kang, Chul-Sung;Shin, Keun-Ha;Choe, Han-Sung;Han, Uk
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.3
    • /
    • pp.373-384
    • /
    • 2003
  • This study analyses the soil loss due to cropland increase in the Hoeryeung area of northeast Korea, using Landsat images of 1987 TM and 2001 ETM, together with DTED, soil and geological maps, and rainfall data of 20 years. Items of land cover and land use were categorized as cropland, settlement, forest, river zone, and sand deposit by supervised classification with spectral bands 1, 2 and 3. RUSLE model is used for estimation of soil loss, and AML language for calculation of soil loss volumes. Fourier transformation method is used for unification of the geographical grids between Landsat images and DTED. GTD was selected from 1:50,000 topographic map. Main sources of soil losses over 100 ton/year may be the river zone and settlement in the both times of 1987 and 2001, but the image of the 2001 shows that sources areas have developed up to the higher mountain slopes. In the cropland average, increases of hight and gradient are 24m and $0.8^{\circ}$ from 1987 to 2001. In the case of new developed cropland, average increases are 75m and $2.5^{\circ}$, and highest soil loss has occurred at the elevation between 300 and 500m. The soil loss 57 ton of 1987 year increased 85 ton of 2001 year. Soil loss is highest in $30{\sim}50^{\circ}$ slope zones in both years, but in 2001 year, soil loss increased under $30^{\circ}$ zones. The size of area over 200 ton/year, indicating higher risk of landslides, have increased from $28.6km^2$ of 1987 year to $48.8km^2$ of 2001 year.

  • PDF

Analysis of Growth Characteristics and Yield Components According to Rice Varieties Between on Irrigated and Partially Irrigated Rice Paddy Field (수리불안전답에서의 벼 품종별 생육 및 수량구성요소 특성 변이 분석)

  • Kim, Tae-Heon;Hur, Yeon-Jae;Oh, Seong-Hwan;Lee, Ji-Yoon;Cho, Jun-Hyun;Han, Sang-Ik;Lee, Jong-Hee;Baek, Dongwon;Song, You-Chun;Choi, Weon-Young;Nam, Min-Hee;Park, Dong-Soo;Kwon, Yeong-Up;Shin, Dongjin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.17-24
    • /
    • 2016
  • Drought caused by global climate change is one of serious problems for rice cultivation. However, it was little reported the impact of drought on rice cultivation in Korea. In here, to assess impact of drought on rice varieties in Korean climate condition, growth characteristics and yield components of rice were compared on irrigated and partially irrigated rice paddy field. First, we have chosen 11 rice varieties including 'Saeilmi' and 'Shindongjin' which are widely cultivated in Korea. For partially irrigated rice paddy treatment, we have withheld irrigation from 25 days after transplanting and water supply was totally dependent on rainfall for rice cultivation. When we examined early plant height and tiller number of these varieties on partially irrigated rice paddy were reduced 1.6% to 18.4% and 10.4% to 33.1%, respectively, and these reduction rate were highly correlated with yield loss in our experimental conditions. Among rice yield components, panicle number was decreased 10.5% to 30.1% according to rice varieties and reduced panicle number was highly correlated with yield loss. Grain number per panicle, grain filling rate and 1,000 seeds weight did not have correlation with yield loss of rice varieties. These result means that growth stage, especially the tillering stage, is seriously affected by drought on rice cultivation in Korea. And we suggest that 'Saeilmi', 'Ilmi' and 'Ilpum' are good for rice cultivation on drought prone rice field in Korea.

Barley Sowing by Partial Tillage Direct Grain Seeder in Wet Paddy Field (논 과습포장에서 부분경운 건답직파기를 이용한 보리 파종)

  • Koo, Bon-Cheol;Kim, Jae-Cheol;Yang, Yon-Ha;Kang, Moon-Seok;Cho, Young-Son;Park, Seok-Ho;Park, Kwang-Geun;Lee, Choon-Ki;Shin, Jin-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.259-263
    • /
    • 2007
  • Sowing time of barley after cultivation of rice has frequently been delayed because of rainfall or some other reasons by rice cultivation. Partial tillage direct grain seeder with eight row, which had been developed for rice sowing and showed many advantages in wet field, were tested for barley sowing. After flooding during $2{\sim}3days$, plots were designed to make wet condition. Three sowing methods were tested; high ridged broadcasting, plat drill seeding and partial tillage direct grain seeding. It were impossible to sow properly even in 27% of soil water content by high ridged broadcasting, plat drill seeding but could be possible to sow normally by partial tillage direct grain seeder in 42% of soil water content as good as in 27% of soil water content. Initial growth condition after sowing in plots of partial tillage direct grain seeder were normal even in plots sown in more than 50% of soil water content. No. of spike, which was $508/m^2$, in plot of partial tillage direct grain seeder sowed at 30% soil water content was better than plat drill seeding, $404/m^2$. Yield and yield components of plot of partial tillage direct grain seeder, were higher than plot sowed by plat drill seeder in same soil water content. Partial tillage direct grain seeding can be a good sowing way for barley especially in wet condition. However, parts of seeder have to be improved for barley sowing; 1) ridged width of partial tillage direct grain seeder should be $10{\sim}20cm$ wider than 10 cm, which is necessary for drainage during barley growing season in wet paddy field. 2) sowing width of partial tillage direct grain seeder was not same with one of drill seeder which was the best width for light interception and should be shorter than 30cm.

An Analysis of Anomalous Radon Variation Caused by M5.8 Gyeong-ju Earthquake (규모 5.8 경주 지진에 의한 토양 내 라돈농도의 이상변화 분석)

  • Kim, Jin-seop;Kim, Minjun;Kim, Sunwoong;Lee, Hyomin
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The radon concentration in soil varies with environmental factors such as atmospheric temperature and pressure, rainfall and soil temperature. The effects of these factors, therefore, should be differentiate in order to analyzed the anomalous radon variation caused by earthquake events. For these reasons, a comparative analysis between the radon variations with environmental factors and the anomalous variations caused by Gyeong-ju earthquake occurred in September 12, 2016 has been conducted. Radon concentration in soil and environmental factors were continuously measured at a monitoring ste located in 58Km away from earthquake epicenter from January 01, 2014 to May 31, 2017. The co-relationships between radon concentration and environmental factors were analyzed. The seasonal average radon concentration(n) and the standard variation(${\rho}$) was calculated, and the regions of ${\pm}1{\rho}$ and ${\pm}2{\rho}$ deviations from seasonal average concentration were investigated to find the anomalous radon variation related to Gyeong-ju earthquake. Earthquake effectiveness and q-factor were also calculated. The radon concentration indicated the seasonal variation pattern, showing high in summer and low in winter. It increases with increasing air temperature and soil temperature, and has the positive co-relationships of $R^2=0.9136$ and $R^2=0.8496$, respectively. The radon concentration decreases with increasing atmospheric pressure, and has the negative co-relationships of $R^2=0.7825$. Four regions of ${\pm}2{\rho}$ deviation from average seasonal concentration (A1: 7/3~7/5, A2: 7/18, A3: 8/4~8/5, A4: 10/17~10/20) were detected before and after Gyeong-ju earthquake. A1, A2, A3 were determined as the anomalous radon variation caused by the earthquake from co-relationship analyses with environmental factors, earthquake effectiveness and q-factor. During the period of anomalous radon variation, correlation coefficients between radon concentration and environmental factors were significantly lowered compared to other periods such as air temperature ($R^2=0.2314$), soil temperature ($R^2=0.1138$) and atmospheric pressure ($R^2=0.0475$). Annual average radon concentration was also highest at 2016, the year of Gyeong-ju earthquake.

Comparison of Nutrient Balance in a Reclaimed Tidal Upland between Chemical and Compost Fertilization for the Winter Green Barley Cultivation (간척농경지에서 비종에 따른 동계 청보리 재배 포장의 영양물질 수지 비교)

  • Song, In-Hong;Lee, Kyong-Do;Kim, Ji-Hye;Kang, Moon-Seong;Jang, Jeong-Ryeol
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • BACKGROUND: Along with the surplus rice production, introduction of upland crop cultivations into newly reclaimed tidal areas has gained public attentions in terms of farming diversification and farmers income increase. However, its impacts on the surroundings have not been well studied yet, especially associated with nutrient balance from reclaimed upland cultivation. The objective of this study was to investigate water and nutrient balance during winter barley cultivation as affected different fertilization methods. METHODS AND RESULTS: TN and TP balance for three different plots treated by livestock compost, chemical fertilizer, and no application were monitored during winter green barley cultivation (2010-2011) at the NICS Kyehwa experimental field in Jeonbuk, Korea. Nutrient content in soil and pore water near soil surface appeared to increase, while sub-soil layer remained similar with no fertilization plot. Livestock compost application appeared to increase organic matter content in surface soil compared to chemical fertilization. Crop yield was the greatest with livestock compost application (10.6 t/ha) followed by chemical fertilization (6.9 t/ha) and no application (1.8 t/ha). The nitrogen uptake rate was also greater with livestock compost (52.4%) than chemical fertilizer (48.1%). Phosphorus uptake rate was much smaller (about 7.0%) compared to nitrogen. Nutrient loss by surface and subsurface runoff seemed to be minimal primarily due to small rainfall amount during the winter season. Most of the remaining nutrients, particularly phosphate seemed to be stored in soil layer. Phosphate accumulation appeared to be more phenomenal in the plot applied by livestock compost with higher phosphorus content. CONCLUSION: This study demonstrated that livestock compost application to tidal upland may increase barley crop production and also improve soil fertility by supplying organic content. However, excessive phosphorus supply with livestock compost seems likely to cause a phosphate accumulation problem, unless the nitrogen-based fertilization practice is adjusted.