Ammonia Volatilization from Coated Urea in Paddy Soil of Transplanting Rice Culture

벼 이앙재배에서 피복요소 시용에 따른 암모니아 휘산

  • Lee, Dong-Wook (Yeongnam Agricultural Research Institute, NICS, RDA) ;
  • Park, Ki-Do (Yeongnam Agricultural Research Institute, NICS, RDA) ;
  • Park, Chang-Young (Yeongnam Agricultural Research Institute, NICS, RDA) ;
  • Kang, Ui-Gum (Yeongnam Agricultural Research Institute, NICS, RDA) ;
  • Son, Il-Soo (Yeongnam Agricultural Research Institute, NICS, RDA) ;
  • Yun, Eul-Soo (Yeongnam Agricultural Research Institute, NICS, RDA) ;
  • Park, Sung-Tae (Yeongnam Agricultural Research Institute, NICS, RDA) ;
  • Lee, Suk-Soon (School of Biological Resources, Yeungnam University)
  • 이동욱 (작물과학원 영남농업연구소) ;
  • 박기도 (작물과학원 영남농업연구소) ;
  • 박창영 (작물과학원 영남농업연구소) ;
  • 강위금 (작물과학원 영남농업연구소) ;
  • 손일수 (작물과학원 영남농업연구소) ;
  • 윤을수 (작물과학원 영남농업연구소) ;
  • 박성태 (작물과학원 영남농업연구소) ;
  • 이석순 (영남대학교)
  • Received : 2005.10.20
  • Accepted : 2005.11.22
  • Published : 2005.12.30

Abstract

Ammonia ($NH_3$) volatilization was measured from latex coated urea (LCU) and normal urea treated rice paddy under transplanting rice culture in Milyang in 2002 and 2003. The $NH_3$ volatilization from incubation experiment was significantly related with ammonium-N ($NH_4-N$) concentration and pH in the surface water. The correlation coefficients of $NH_3$ volatilization compared to the $NH_4-N$ and pH in surface water were significantly higher in urea than LCU. The $NH_3$ volatilization from both urea and LCU treatments was not increased in surface water of pH less than 8.0, while $NH_3$ volatilization increased significantly in the surface water of pH over 8.0. The results in the field experiment indicated that $NH_3$ volatilization after top-dressing of urea increased rapidly with increasing $NH_4-N$ concentration in soil and floodwater, and highest from 7 to 10 days after top-dressing. The amount of $NH_3$ volatilized from urea treatment was in the range of $4.9-8.4kg\;N\;ha^{-1}$. The variations of $NH_3$ volatilization in 2002 and 2003 were caused by changed N dynamics due to the different weather conditions such as rainfall and temperature. The amount of $NH_3$ volatilized from LCU treatment was significantly reduced compared to that of urea. The reason for the reduced $NH_3$ volatilization in LCU treatment would be due to the lower concentration of $NH_4-N$ in floodwater. The amount of $NH_3$ volatilized from LCU treated rice paddy was in the range of $1.2-1.8kg\;N\;ha^{-1}$, and the loss of N by ammonia volatilization was 2.0-2.3%. Loss of N by $NH_3$ volatilization with LCU treatment was reduced by 75-79% comparing to urea treatment.

LCU와 요소를 담수토양의 전층에 혼합처리한 후 $30^{\circ}C$의 항온 시험 결과, LCU와 요소 시용구에서 모두 표면수의 $NH_4-N$ 농도와 pH가 증가함에 따라 암모니아 휘산량은 지수함수적으로 증가하였다. 그러나 LCU 시용구에서는 표면수의 $NH_4-N$ 농도가 $10mg\;L^{-1}$ 이하이었고 휘산량도 $0.5kg\;N\;ha^{-1}$이었다. 반면에 요소 시용구에서는 $NH_4-N$ 농도가 $40mg\;L^{-1}$까지 증가하였고, 암모나아 휘산량도 $1.6kg\;N\;ha^{-1}$까지 증가하여 암모니아 휘산량은 $NH_4-N$ 농도와 상관이 높았다. 표면수의 pH와 암모니아 휘산량과의 상관관계를 보면 LCU와 요소 시용구에서 모두 표면수의 pH가 7.0-8.0일 때는 암모니아 휘산량이 $0.2kg\;N\;ha^{-1}$ 이하로 뚜렷한 증가가 없었으나 pH가 8.0 이상일 때에는 pH가 증가할수록 암모니아 휘산량이 급격히 증가하였다. 토양 $NH_4-N$ 농도는 이앙 후 20일경에 가장 높았는데 LCU 100% 처리구에서 $38mg\;kg^{-1}$, 요소 시용구에서 $36mg\;kg^{-1}$, LCU 80% 처리구에서 $28mg\;kg^{-1}$ 순으로 높았다. 벼 이앙재배에서 완효성질소비료인 LCU를 표준 시비량의 80%과 100% 수준으로 시용하여 관행 요소 시용에 대한 암모니아 휘산에 의한 손실 절감 효과를 검토하였다. 표면수의 $NH_4-N$ 농도는 요소시용구에서는 추비 후 $NH_4-N$ 농도가 $8-10mg\;L^{-1}$로 크게 높아졌으나, LCU 처리구에서는 생육기간동안 $1mg\;L^{-1}$ 이하로 낮았다. 요소 시용구에서의 암모니아 휘산량은 추비 시용 후 급격히 증가하였고, 시비질소에 대한 총 휘산량은 $4.9-8.4kg\;N\;ha^{-1}$ 로서 연차간에 차이를 보였다. 한편 LCU 시용시 암모니아 휘산량은 LCU의 시비량에 관계없이 $1.2-1.8kg\;N\;ha^{-1}$ 였으며, 연차간에도 휘산량의 차이를 보이지 않았다. 따라서 벼 기계이앙재배시 요소에 비하여 완효성 질소비료인 LCU의 시용으로 암모니아 휘산은 75-79% 경감되었다.

Keywords

References

  1. Abichandani, C. T., and S. Patnaik. 1955. Mineralizing action of lime on soil nitrogen in waterlogged rice soils. Int. Rice Comm. News Letter 13: 11-13
  2. Bayrakli, F. 1996. Ammonia volatilization losses from different fertilizers and effect of serveral urease inhibitors, CaCh and phosphogypsum on losses from urea. Fert. Res. 23:147-150 https://doi.org/10.1007/BF01073430
  3. Beyrouty, C. A., L. E. Sommers, and D. W. Nelson. 1988. Ammonia volatilization from surface-applied urea as affected by several phosphoroamide compound. Soil Sci. Soc. Am. J. 52: 1173-1178 https://doi.org/10.2136/sssaj1988.03615995005200040051x
  4. Bouldin, D. R., and B. V. Alimagno. 1976. Ammonia volatilization losses from IRRI paddies following broadcast applications of fertilizer nitrogen. Internal Report. International Rice Research Institute, Los Banos, Pillippines
  5. Bouldin, D. R., C. Hongprayoon, C. W. Lindau, and W. H. Patrick Jr. 1991. Urea transformation in flooded soil column. II. Derivation of model and implications to ammonia volatilization. Soil Sci. Soc. Am. J. 55:1135-1142 https://doi.org/10.2136/sssaj1991.03615995005500040039x
  6. Bouwmeester, R. J. B., P. L. G. Vlek, and J. M. Stumpe. 1985. Effect of environmental factors on ammonia volatilization from a urea-fertilized soil. Soil. Sci. Soc. Am. J. 49:376-381 https://doi.org/10.2136/sssaj1985.03615995004900020021x
  7. Broadbent, F. E., G. N. Hill, and K. B. Tyler. 1958. Tranformation and movement of urea in soil. Soil Sci. Soc. Am. Proc. 22:303-307
  8. De Datta, S. K. 1987. Nitrogen transformation process in relation to improved cultural practices for lowland rice. Plant Soil 100:47-69 https://doi.org/10.1007/BF02370932
  9. De Datta, S. K., and P. M. Zarata. 1970. Enviromental conditions affecting the growth characteristics, nitrogen response, and grain yield of tropical rice. Biometeorol. 4:71-89
  10. Fenn, L. B., and J, Richards. 1986. Ammonia losses from surface applied urea-acid products. Fert. Res. 9:265-275 https://doi.org/10.1007/BF01050352
  11. Fenn L. B., and L. R. Hossner. 1985. Ammonia volatilization from ammonium and ammonium-forming nitrogen fertilizer. Adv. Soil Sci. 1:123-169
  12. Fillery, I. R. P., and P. L. G. Vlek. 1986. Reappraisal of the significance of ammonia volatilization as an N loss mechanism in flooded rice fields. Fert. Res. 9:265-275 https://doi.org/10.1007/BF01050352
  13. Freney, J. R., R. Leuning, J. R. Simpson, and O. T. Denmead, and W. A. Muirhead. 1985. Estimating ammonia volatilization from flooded rice fields by simplified techniques. Soil Sci. Soc. Am. J. 49: 1049-1054 https://doi.org/10.2136/sssaj1985.03615995004900040051x
  14. Laville, P., C. Jambert, P. Celler, and R. Dlemas. 1999. Nitrousoxide fluxes from a fertilized maize crop using micrometeorological and chamber methods. Agric. Forest Meteorol. 96:19-38 https://doi.org/10.1016/S0168-1923(99)00054-4
  15. Lee, S. S., and D. W. Lee. 2001. Growth of seedlings and transplanted rice affected by slow release nitrogen fertilizers mixed with soil in seeding box. Korea J. Crop Sci. 43:289-295.16
  16. NlAST. 1987. Chemical analysis of soil and plant. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea
  17. Nommik, H. 1973. The effect of pellet size on the ammonia loss from urea applied to forest soil. Plant Soil 39:309-318 https://doi.org/10.1007/BF00014798
  18. Park, K. B. 1993. Effect of the whole-layer application of slowrelease fertilizer on growth and yield of rice. Korean J. Crop. Sci. 37:499-505
  19. Rao, D. L. N. 1987. Slow release urea fertilizers-effect on flood water chemistry, ammonia volatilization and rice growth in an alkali soil. Fert. Res. 13:209-221 https://doi.org/10.1007/BF01066445
  20. Vlek, P. L. G., and E. T. Craswell. 1979. Effect of N source and management on ammonia volatilization losses from flooded-rice systems. Soil Sci. Soc. Am. J. 43:352-358 https://doi.org/10.2136/sssaj1979.03615995004300020023x
  21. Vlek, P. L. G., and E. T. Craswell. 1981. Ammonia volatilization from flooded soils. Fert. Res. 2:227-245 https://doi.org/10.1007/BF01050196
  22. Watanabe, I., and S. Mitsui. 1979. Denitrification loss of fertilizer nitrogen in paddy soils-its recognition and impact. IRRI Research Paper Series. 37: 1-10
  23. Yoo, C. H., B. W. Shin, S. B. Lee, J. H. Jeong, S. S Han, and S. J. Kim. 1997. Effect of latex coated urea on nitrogen use efficiency and yield on drill seeded rice. J. Korean Soc. Soil. Sci. Fert. 30:114-121