• Title/Summary/Keyword: Rainfall variation

Search Result 539, Processing Time 0.025 seconds

Effect of Temporal Distribution of Rainfall on Water-Surface Level of Sihwa Lake (강우분포유형이 저수지의 홍수위에 미치는 영향 (시화호를 중심으로))

  • Lee, Jong-Kyu;Lee, Jai-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.325-343
    • /
    • 2003
  • In this study, several types of rainfall time distribution of the probabilistic rainfall amount have been applied to the Sihwa Lake, located in Gyounggi Province, Korea and their runoff characteristics, obtained by the Hec-Hms program, according to the rainfall distribution types, were compared and analysed. And then, the influences of the above rainfall distribution types of the highest water level of the reservoir, computed through the reservoir flood routing, were analysed. The tidal variation was considered, performing the flood routing and, in addition, the new program, called “IWSEA”, which can compute the reservoir water level, was developed. To conclude, when the Mononobe type of the rainfall distribution was used, the largest inflow flood discharge into the reservoir was performed and the highest reservoir water level was obtained when the Pilgrim-Cordery type of the rainfall distribution was applied.

Method for Analysis on Optimization of Averaging Interval of Rainfall Rate Measured by Tipping-Bucket Rain Gauges

  • Nam, Kyung-Yeub;Chang, Ki-Ho;Kim, Kyung-Eak;Oh, Sung-Nam;Choi, Young-Jean;Kim, Kyung-Sik;Lee, Dong-In;Kim, Kum-Lan
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Rainfall data from three different types of rain gauge system have been collected for the summertime rain event at Mokpo in the Korean peninsula. The rain gauge system considered in this paper is composed of three tipping-bucket rain gauges with 0.1, 0.2, and 0.5 mm measuring resolutions, the Optical Rain Gauge (ORG), and the PARSIVEL (PARticle SIze and VELocity). The PARSIVEL rainfall rate has been considered as the reference for comparison since it gave good resolution and performance on this event. Comparison with the PARSIVEL rainfall rate gives the results that the error and temporal variation of rainfall rate are simultaneously reduced with increasing the averaging interval of rainfall rate or decreasing the size of tipping bucket. This suggests that the estimated rainfall rate must be optimized, differently for the type of tipping-bucket rain gages, by minimizing the averaging interval of rainfall rate under the condition satisfying the given performance of rainfall rate.

Seasonal Variation of Hydraulic Gradient according to Rainfall in Unconfined Aquifer : Hyogyo-ri (자유면 대수층에서 강우량에 따른 수리경사 계절 변동 분석 : 효교리)

  • Kyoung-deok Park;Dong-hwan Kang;Won Gi Jo;In-Kyu Shin;Yun-Yeong Oh;MoonSu Kim;Hyun-Koo Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.303-313
    • /
    • 2023
  • In this study, the hydraulic gradient was calculated using the groundwater level and rainfall observed in the Hyogyo-ri area for a year, and the change in the hydraulic gradient according to the rainfall was analyzed. It was found that the groundwater level increased as the rainfall increased in all groundwater wells in the research site, and the groundwater level rise decreased as the altitude of the groundwater well increased. The hydraulic gradient in the research site ranged from 0.016 to 0.048, decreasing during rainfall and increasing after the end of the rainfall. As the rainfall increased, the groundwater level rise in the low-altitude area was more than the high-altitude area, and the hydraulic gradient decreased due to the difference in groundwater level rise according to the altitude. Through this study, it was found that the influence of rainfall is dominant for the fluctuation of the hydraulic gradient in the unconfined aquifer.

Derivation of rainfall threshold for urban flood warning based on the dual drainage model simulation

  • Dao, Duc Anh;Kim, Dongkyun;Tran, Dang Hai Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.141-141
    • /
    • 2021
  • This study proposed an equation for Rainfall Threshold for Flood Warning (RTFW) for urban areas based on computer simulations. First, a coupled 1D-2D dual-drainage model was developed for nine watersheds in Seoul, Korea. Next, the model simulation was repeated for a total of 540 combinations of the synthetic rainfall events and watershed imperviousness (9 watersheds × 4 NRCS Curve Number (CN) values × 15 rainfall events). Then, the results of the 101 simulations with the critical flooded depth (0.25m-0.35m) were used to develop the equation that relates the value of RTFW to the rainfall event temporal variability (represented as coefficient of variation) and the watershed Curve Number. The results suggest that 1) the rainfall with greater temporal variability causes critical floods with less amount of total rainfall; and that 2) the greater imperviousness requires less rainfall to have critical floods. For validation, the proposed equation was applied for the flood warning system with two storm events occurred in 2010 and 2011 over 239 watersheds in Seoul. The results of the application showed high performance of the warning system in issuing the flood warning, with the hit, false and missed alarm rates at 68%, 32% and 7.4% respectively for the 2010 event and 49%, 51% and 10.7% for the event in 2011.

  • PDF

The Variations of Interstational and Interseasonal Rainfall in South Korea (남한의 지역간, 계절간 강수량의 특성)

  • 최희구
    • Water for future
    • /
    • v.11 no.2
    • /
    • pp.62-69
    • /
    • 1978
  • Interstational and interseasonal analyses of the correlation and variability in the seasonal and annual precipitation for 10 basic synoptic stations in South Korea, on the basis of rainfall record of over 40 years, are carried out. It is found that the climatic regions of precipitation could be classified by means of the interstational analysis for the correlations. Corrleation coefficients in interstational relationship of precipitation are lowest in autumn which characterizeds a strong locality while the highest value shows a relatively weak locality in winter. Interseasonal relationship between summer and winter precipitation shows mostly 10 percent significant level with all positive values. The magnitude of the variation coefficients are appeared to be in the order of winter, autumn, spring and summer. It is shown that the highest which is winter ranges between 0.33 0.58, and for the lowest summer, 0.26-0.44, respectively in the areal distribution of the coefficient. The secular changes of the variation coefficient in the recent trend show increases in spring at two station; Seoul and Incheon, in summer at Busan and in autumn at two stations; Busan and Incheon while in winter show devreases at the whole stations. An annual variation seems to show generally a constant trend as whole for all the stations.

  • PDF

The Variation of Slope Stability by Ground Water Level in Railway Lines (지하수위에 따른 철도사면의 안정성 변화)

  • Kim, Hyun-Ki;Shin, Min-Ho;Shin, Ji-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.789-795
    • /
    • 2008
  • Slope stability is affected by various factors. For safety management of slopes, monitoring systems have been widely constructed along railway lines. The representative data from the systems are variations of ground profile such like ground water level and pore water pressure etc. and direct displacement measured by ground clinometer and tension wire sensor. Slopes are mainly effected by rainfall and rainfall causes the decrease of factor of safety(FOS). Because FOS varies linearly by the variation of ground water level and pore pressure, it has a weak point that could not define the time and proper warning sign to secure the safety of the train. In this study, alternative of FOS such as reliability index and probability of failure is applied to slope stability analysis introducing the reliability concept. FOS, reliability index, probability of failure and velocity of probability of failure of the slopes by variation of ground water level are investigated for setting up the specification of safety management of slopes. By executing case study of a slope(ILLO-IMSUNGLI), it is showed to be applied to specification of safety management.

  • PDF

Restoration of 19th-century Chugugi Rainfall Data for Wonju, Hamheung and Haeju, Korea (19세기 원주감영, 함흥감영, 해주감영 측우기 강우량 복원)

  • Kim, Sang-Won;Park, Jun-Sang;Kim, Jin-A;Hong, Yoon
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.129-135
    • /
    • 2012
  • This study restores rainfall measurements taken with the Chugugi (rain gauge) at Wonju, Hamheung, and Haeju from the Deungnok (government records from the Joseon Dynasty). We restored rainfall data corresponding to a total of 9, 13, and 18 years for Wonju, Hamheung, and Haeju, respectively. Based on the restored data, we reconstructed monthly rainfall data. Restoration was most successful for the rainy season months of June, July and August. The restored rainfall data were compared with the summer rainfall data for Seoul as recorded by the Seungjeongwon (Royal Secretariat). In June, the variation in the restored rainfall data was similar to that of the Seungjeongwon data for Seoul. In July and August, however, the variations in the reconstructed data were markedly different from those in the Seoul data (Seungjeongwon). In the case of the worst drought in the summer of 1888, a substantial shortage of rainfall was found in both the Seungjeongwon data for Seoul and the restored data for the three regional locations.

An Hourly Extreme Data Estimation Method Developed Using Nonstationary Bayesian Beta Distribution (비정상성 Bayesian Beta 분포를 이용한 시 단위 극치자료 추정기법 개발)

  • Kim, Yong-Tak;Kim, Jin-Young;Lee, Jae Chul;Kwon, Hyun-Han
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.256-272
    • /
    • 2017
  • Extreme rainfall has become more frequent over the Korean peninsula in recent years, causing serious damages. In a changing climate, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to overestimate (or underestimate) the design rainfalls. A main objective of this study is to develop a stochastic disaggregation method of seasonal rainfall to hourly extreme rainfall, and offer a way to derive the nonstationary IDF curves. In this study, we propose a novel approach based on a Four-Parameter Beta (4P-beta) distribution to estimate the nonstationary IDF curves conditioned on the observed (or simulated) seasonal rainfall, which becomes the time-varying upper bound of the 4P beta distribution. Moreover, this study employed a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters. The proposed model showed a comparable design rainfall to that of GEV distribution under the stationary assumption. As a nonstationary rainfall frequency model, the proposed model can effectively translate the seasonal variation into the sub-daily extreme rainfall.

Estimation of Design Rainfall Considering the Change of the Number of Years for Observed Data (관측년수변화를 고려한 설계강우량 산정)

  • Ryoo, Kyong-Sik;Lee, Soon-Hyuk;Hwang, Man-Ha;Lee, Sang-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.284-287
    • /
    • 2005
  • The objective of this study is to check into variation trends of design rainfall according to change of the number of years for observed data. To make comparative study of the relation between design rainfall and recorded year, this study was used maximum rainfall for 24-hr consecutive duration at Gangneung, Seoul, Incheon, Chupungnyeong, Pohang, Daegu, Jeonju, Ulsan, Gwangju, Busan, Mokpo and Yeosu rainfall stations. The tests for Independence, Homogeneity and detection of outliers were used Wald-Wolfowitz's test, Mann-Whitney's test and Grubbs and Beck test respectively. To select appopriate distribution, the distribution of genaralized pareto(GPA), generalized extreme value(GEV), generalized logistic(GLO), lognormal and pearson type 3 distribution is judged by L-moment ratio diagram and Kolmogorov-Smirnov (K-S) test. Design rainfall was estimated by at-site frequency analysis using L-moments and Generalized extreme value(GEV) distribution according to change of the number of years for observed data. Through the comparative analysis for design rainfall induced by L-moments and GEV distribution, relationship between design rainfall and recorded year is provided.

  • PDF

The South-North Oscillation Centered on 1996 in Korean Summer Rainfall Variability (한반도 여름 강우량의 변화에서 1996년을 중심으로 나타나는 남북진동 패턴)

  • Choi, Ki-Seon;Oh, Su-Bin;Kim, Do-Woo;Byun, Hi-Ryong
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.91-100
    • /
    • 2010
  • In accordance with the time series of rainfall in summer (June, July and August) in South and North Korea for recent 28 years (1981-2008), rainfall is substantially increased in South Korea since 1996, while it is significantly decreased in North Korea. In particular, the decreasing tendency of rainfall in summer in North Korea is more definitely observed during the $2^{nd}$ rainy season (late August - mid September) in intraseasonal variation. Such a feature is also confirmed in the spatial distribution of oscillation pattern between South and North Korea on the basis of 1996 which is obtained by empirical orthogonal function analysis using the summer rainfall observed in all weather observation stations in South and North Korea. For the decreasing tendency of rainfall in North Korea, it is found that northeasterlies from anticyclonic circulation centered on around Baikal Lake weaken convective activity during summer. On the contrary, the increasing tendency of rainfall in South Korea is related to the strengthened cyclonic circulation in the southern region of China and accordingly, enhances southwesterlies in South Korea.