• Title/Summary/Keyword: Rainfall slope test

Search Result 98, Processing Time 0.031 seconds

Analysis of Seepage Velocity in Unsaturated Weathered Soils Using Rainfall Infiltration Test (강우침투실험을 통한 불포화 풍화토 지반의 강우 침투속도 분석)

  • Kim, Hoon;Shin, Ho-Sung;Kim, Yun-Tae;Park, Dug-Keun;Min, Tuk-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Rainfall infiltration test under one dimensional condition is conducted to evaluate the effect of rainfall intensity on seepage velocity and infiltration characteristics for initial unsaturated sediment. Experimental results are compared with those numerical simulations with respect to variations of pore water pressure, degree of saturation and discharge velocity with time, and both results give good agreement. High rainfall intensity tends to increase seepage velocity almost linearly. But it shows rapid increase as rainfall intensity approaches saturated hydraulic conductivity of the sediment. In addition, the upper part of wetting front depth is partially saturated, not fully. Therefore, actual wetting front depth is considered to advance faster than theoretical prediction, which leads to slope instability of unsaturated slope due to surface rainfall.

A Study on the Slope Analysis of Weathered Limestone Soils during Rainfalls (강우 시 석회암 풍화토 사면의 안정해석에 관한 연구)

  • Kim Jong-Ryeol;Kang Seung-Goo;Kang Hee-Bog;Park Seung-Kyun;Park Chol-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • A set of soil samples were picked up from a failed slope formed by rainfall in limestone zone in Jangseong-gun, Jeonnam, Korea, to find out its physical and mechanical characteristics for this study, and variation of safety factor depending on slope inclination was defined by analysing slope stability affected by rainfall. Decomposed limestone soil in the research area is composed of quartz, orthoclase, gibbsite, geothite, etc., with specific gravity of 2.73, and this soil is included in SC by unified soil classification system. Calcium ingredient decreased remarkably during weathering at its mother rock. Coefficient of permeability is 2.56×10/sup -4/ cm/ sec, similar to its value of silty clay. Cohesion decreases remarkably from 3.0 t/ ㎡ to 0.72 t/ ㎡, and Φ value of internal friction angle tends to decrease as it turns to be saturated soil from partial saturated soil in the shear test. To analyze slope stability affected by rainfall, it is reasonable to seek seepage depth with reference to rainfall* intensity. In the slope stability analysis, when the seepage depth is the larger, its safety factor is the less, which makes the slope unstable. Comparing with minimum safety factor, 1.5 of cut slope in consideration of the seep-age line, safety factor is found to be satisfactory only when inclination of cut slope of decomposed limestone soil is more than 1:1.2 slope at least considering rainfall. It is also found that decrease of cohesion has great effect on decline of safety factor of slope while partial saturated soil turns to be saturated soil.

Analysis on the Rainfall Driven Slope Failure Adjacent to a Railway : Flume Tests (강우로 인한 철도 연변사면의 활동분석 : 실내모형실험)

  • SaGong Myung;Kim Min-Seok;Kim Soo-Sam;Lee In-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.83-91
    • /
    • 2006
  • Recently, the intensive rainstorm possibly induced by global warming plays a key role on the instability of railway adjacent slopes. The instability of slopes results as covering and loss of railway lines induced by slided soil mass. According to the site investigation on the failed slopes triggered by rainfall, low types of slope failure were observed: shallow, intermediate, gully erosion, and soil-rock interface failures. The observation reveals the different characteristics of slope failure depending on the thickness of soil layer, morphological features of slope, etc. Based upon the observations, flume tests were conducted to analyze the sliding mechanism of each failure. The variables of flume test are soil layer thickness, rainfall intensity, and morphology of slope under the constant condition of the percentage of fine, initial soil moisture content, slope angle and compaction energy. Test results show that shallow failure was mostly observed from the surface of the slope and caused by the soil erosion; in addition, compared to the other types of failure, the occurrence of initial erosion is late, however, the development of erosion is fast. In gully erosion failure, the collected water from the water catchment area helps erosion of the upper soil layer and transfer of residual corestone, which impedes the erosion process once the upper soil layers are eroded and corestone are exposed. The soil-rock interface failure shows the most fast initial erosion process among the failure types. Interestingly, the common feature observed from the different types of failure was the occurrence of the initial deformation near the toe of slopes which implies the existence of surbsurface flow along the downslope direction.

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.

Variation of Slope Stability under rainfall considering Train Speed (열차의 속도 하중을 고려한 강우시 성토사면의 안정성 변화)

  • 김정기;김현기;박영곤;신민호;김수삼
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.601-607
    • /
    • 2002
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the stability of railway embankment and rainfall introducing the partial saturation concept of ground are defined to analyze the stability of embankment by rainfall. A pressure plate test is also peformed to obtain soil-water characteristic curve of unsaturated soils. Based on this curve, the variables in the shear strength function and permeability function are also defined. These functions are used fur the numerical model for evaluation of railway embankments under rainfall. As comparing the model and case studies, the variation of shear strength, the degree of saturation and pore-water pressure for railway embankment during rainfall can be predicted and the safety factor of railway embankment can be expressed as the function of rainfall amount namely rainfall index. Therefore, the research on safety factor on railway embankment considering train speed and rainfall infiltration with the variation of rainfall intensity and rainfall duration was carried out in this paper.

  • PDF

Erosion Characteristics of TGase-added Biopolymers (TGase 첨가 바이오폴리머의 침식특성 연구)

  • Kanghyun Kim;Seunghyun Kim;Dohee Kim;Jongho Shin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.5-13
    • /
    • 2023
  • Cement-based reinforcement materials, which are representative slope reinforcement materials, can cause contamination of ground and groundwater when ground injection or surface application is applied. Accordingly, slope reinforcement materials using eco-friendly biopolymers are attracting attention as a means of replacing existing materials, but the biopolymers currently used are easily dissolved when exposed to groundwater or rainfall environments, reducing strength. In order to solve this problem, the cross-linking of protein between sodium casein and Transglutaminase (TGase, C20H16N4O2S2) was used to increase the water resistance of biopolymers, and a rainfall slope test was conducted to evaluate their usability and applicability as a slope reinforcing material. In the case of reinforcement with only sodium casein, the precipitation dissolved sodium casein, and the slope was completely destroyed in 1 hour. On the other hand, it was observed that the slope reinforced by adding a small amount of TGase (0.5%) do not collapse even after 80 hours of rainfall duration due to increased water resistance. Strength and water resistance increases due to the addition of a small amount of TGase, and its applicability as an eco-friendly reinforcement is confirmed.

Stability Analysis of Slope Considering Infiltration of Behind Ground (배면침투를 고려한 사면안정해석)

  • Shin, Jong-Ho;Kim, Hak-Moon;Jang, Kyung-Jun;Chae, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1060-1067
    • /
    • 2009
  • Previous research on the slope failure has mainly reported that most of the slope failures occur due to surface rainfall infiltration in the rainy season. A slope of which surface is protected by shotcrete or plants, can also fail due to increase in pore water pressure from the ground water flow beneath the surface, rather than from the surface. In this study such case of slope behavior is investigated using the model test and numerical method including strength reduction method. Hydraulic boundary conditions of the slopes is considered using coupled numerical scheme. The failure mechanism of the slope is investigated and the effect of pore water pressure on slope safety is identified. Increase in pore water pressure due to lateral infiltration has significantly reduced the stability of slope.

  • PDF

A study on the landslide detection method using wireless sensor network (WSN) and the establishment of threshold for issuing alarm (무선센서 네트워크를 이용한 산사태 감지방법 및 경로발령 관리 기준치 설정 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.262-267
    • /
    • 2008
  • Recently, landslides frequently occur on natural slope and/or man-made cut slope during periods of intense rainfall. With a rapidly increasing population on or near steep terrain, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide monitoring systems have been developed throughout the world. In this paper, a simple landslide detection system that enables people to escape the endangered area is introduced. The system is focused on the debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of wireless sensor nodes, gateway, and remote server system. Wireless sensor nodes and gateway are deployed by commercially available Microstrain G-Link products. Five wireless sensor nodes and one gateway are installed at the test slope for detecting ground movement. The acceleration and inclination data of test slope can be obtained, which provides a potential to detect landslide. In addition, thresholds to determine whether the test slope is stable or not are suggested by a series of numerical simulations, using geotechnical analysis software package. It is obtained that the alarm should be issued if the x-direction displacement of sensor node is greater than 20mili-meters and the inclination of sensor node is greater than 3 degrees. It is expected that the landslide detection method using wireless senor network can provide early warning where landslides are prone to occur.

  • PDF

Rainfall Distribution Characteristics of Artificial Rainfall System for Steep-Slope Collapse Model Experiment (급경사지 붕괴 모의실험을 위한 인공강우장치의 강우분포특성)

  • Jeong, Hyang-Seon;Kang, Hyo-Sub;Suk, Jae-Wook;Kim, Ho-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.828-835
    • /
    • 2019
  • An artificial rainfall system is used widely as a research tool for generating model experiment data. Artificial rainfall devices have been used in many studies, but studies of the rainfall distribution are not considered as important issues. To simulate various rainfall characteristics, it should be possible to simulate from low to high intensity, and the homogeneity of the rainfall distribution should be ensured. In this study, the maximum rainfall intensity was set to 130mm/hr and controlled by 10mm/hr. In addition, the aim was to secure a uniform coefficient value of 80% or more. To this end, rainfall tests were performed according to the nozzle type, diameter, position, and pump pressure. The rainfall test showed that the circular nozzle was suitable, and the nozzle size was 1.9mm and 1.4mm. The optimal pump pressure was found to be 3~6kg/㎠. The rainfall intensity tended to increase linearly with increasing pump pressure. Based on the rainfall test results, a rainfall control manual was produced with variables, such as pump pressure, nozzle type, and number of nozzles. As a result of rainfall verification, rainfall intensity showed a 3.1% error with a uniformity coefficient of 86%.

A Study on Revgetation Character for Environment Factor of Slope (비탈면 입지조건에 따른 녹화 특성에 관한 연구)

  • Woo, Kyung-Jin;Jeon, Gi-Seong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.5
    • /
    • pp.47-55
    • /
    • 2005
  • This study was conducted to suggest revegetation character for environment factor of slope. Field test carried out for the man-made slope with three types(0.5cm no net, 3.0cm no net, 3.0cm net) revegetation methods in Hwaseong. Test revegetation plants were Festuca arundinacea, Lolium perenne, Lespedeza cyrtobotrya and Indigofera pseudo-tinctoria M. The result of this study can be summarized as follows; 1. The soil hardness, the soil acidity, and the soil humidity of three types(0.5cm no net, 3.0cm no net, 3.0cm net) revegetation methods were at a suitable value for plants growth. 2. All plant growth index(seedling number, ground coverage, plant height, plant weight, etc) of south slope were better than north slope. But plant growth index of net plots were similar to no net plots. 3. For washout investigation, washout quantity of north slope was plentifully measured from south slope, and 1 amount of rainfall will be big was visible appears plentifully.