• Title/Summary/Keyword: Rainfall factor

Search Result 579, Processing Time 0.028 seconds

Seasonal Succession of Zooplankton Community in a Large Reservoir of Summer Monsoon Region (Lake Soyang) (몬순지역 대형댐(소양호)에서 동물플랑크톤 군집의 계절천이)

  • Kim, Moon Sook;Kim, Bomchul;Jun, Man-Sig
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Seasonal succession of zooplankton community and species composition was studied from 2003 to 2014 in a deep reservoir, Lake Soyang, in monsoon climate region, Korea. Annual precipitation was concentrated more than 70% between June and September and it showed remarkably that seasonal variation in water quality. Seasonal variation of water quality in Lake Soyang appeared to be more significant than annual variations, and the inflow of turbid water during the summer rainfall was the most important environmental factor. Zooplankton sepecies composition in Lake Soyang showed obvious tendency through two periods (May to June and August to October) every year. Small zooplankton (rotifer; Keratella cochlearis, Polyarthra vulgaris) dominated in spring and mesozooplankton such as copepods and crustaceans were dominant in summer and fall. Zooplankton biomass showed the maximum in September after monsoon rainfall, and chlorophyll showed a similar seasonal variation and it showed a high correlation (r=0.45). The increase of zooplankton biomass is considered to be a bottom-up effect due to the increase of primary producers and inflow of nutrients and organic matter from rainfall. In this study, we found that the variation of zooplankton community was affected by rainfall in monsoon climate region and inflow of turbid water was an important environmental factor, which influenced the water quality, zooplankton seasonal succession in Lake Soyang. It was also considered to be influenced by hydrological characteristics of lake and environment of watershed. In conclusion, seasonal succession of zooplankton species composition was the same as the PEG model. But seasonal succession of zooplankton biomass differed not only in the temperate lake but also in the monsoon region.

Estimating USLE Soil Erosion through GIS-based Decision Support System

  • Her, Y.G.;Kang, M.S.;Park, S.W.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.3-14
    • /
    • 2006
  • The objective of this study was to develop a GIS-based decision support system (GIS-USLE system) to estimate soil erosion and evaluate its effect on concentrated upland plots in Godang district, Korea. This system was developed for the ArcView environment using A VENUE script. Three modules were used in the GIS-USLE system, namely pre-processing, the USLE factors calculator module, and post-processing. This system benefits from a user friendly environment that allows users with limited computer knowledge to use it. This system was applied to 1,285 individual upland plots ranging from 0.005 to 1.347 ha in size with an average slope steepness of 14 %. The rainfall distributions were estimated using the three methods, namely Mononobe and Yen-Chow with Triangle and with Trapezoid type, and then used to calculate the rainfall erosivity factor. The soil erosion amounts from the 1,285 individual plots in the study area by 2 year return period with a 24h maximum rainfall amount of 154.6 mm were estimated at 5 tons/ha on average. Slope appeared to be the most important factor affecting soil erosion estimation, as expected. The prototype model was applied to the project area, and the results appeared to support the practical applications. By examining many fields simultaneously, this system can easily provide fast estimation of soil erosion and thus reveal the spatial pattern of erosion from fields in a region. This study will help estimate and evaluate soil erosion in concentrated upland districts and identify the best management practices.

Seasonal variation of physicochemical factor and fecal pollution in the Hansan-Geojeman area, Korea

  • Park, Young Cheol;Kim, Poong Ho;Jung, Yeoun Joong;Lee, Ka Jeong;Kim, Min Seon;Go, Kyeong Ri;Park, Sang Gi;Kwon, Soon Jae;Yang, Ji Hye;Mok, Jong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.17.1-17.9
    • /
    • 2016
  • The seasonal variation of fecal coliforms (FCs) and physicochemical factors was determined in seawaters of the Hansan-Geojeman area, including a designated area for oyster, and in inland pollution sources of its drainage basin. The mean daily loads of FCs in inland pollution sources ranged from $1.2{\times}10^9$ to $3.1{\times}10^{11}$ most probable number (MPN)/day; however, the pollutants could not be reached at the designated area. FC concentrations of seawaters were closely related to season, rainfall, and inland contaminants, however, within the regulation limit of various countries for shellfish. The highest concentrations for chemical oxygen demand (COD) and $chlorophyll-{\alpha}$ in seawaters were shown in the surface layer during August with high rainfall, whereas the lowest for dissolved oxygen (DO) in the bottom layer of the same month. Therefore, it indicates that the concentrations of FC, COD, DO, and $chlorophyll-{\alpha}$ of seawaters were closely related to season and rainfall.

A Study on Analytical Solution of Unsaturated Infinite Slope Stability (불포화 무한사면 안전율의 수정방정식에 대한 연구)

  • Chae, Yu-Mi;Kim, Jae-Hong;Jeong, Young-Hun;Kim, Tae-Heon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.5-11
    • /
    • 2018
  • In conventional analytical solutions for rainfall-induced soil slope stability, the Green-Ampt (1911) equation for estimating the saturation depth and the Skempton & DeLory (1957) equation for calculating the infinite slope shallow failure were compared with the numerical analysis to confirm the error. In the simple evaluation of the reason of soil slope instability due to rainfall using the conventional equations, there are many errors and, overestimation or underestimation of the calculation results. In this study, the equation consisting of the results obtained from infiltration analysis on unsaturated soil slope is proposed by applying the average range of the strength parameters of the granite weathered soils, and its reliability is verified by comparing with the numerical analysis results. The developed equation can be used easily in various fields for the estimation of slope safety factor by checking the rainfall duration and saturation depth.

Study on Pesticide Runoff from Soil Surface-I, Runoff of Captafol by Natural Rainfall in Field (농약의 토양 표면유출에 관한 연구-I 포장에서 자연강우에 의한 Captafol의 유출특성)

  • Kim, Yong-Hwa;Kim, Jeong-Han;Park, Chang-Kyu;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.488-493
    • /
    • 1996
  • As a first step of pesticide runoff studies, runoff losses of captafol were measured under natural rainfall conditions in apple orchard area. The maximum concentration of captafol was 180 ppb at 5 th sampling period when the rainfall occurred within 24 hours after captafol was applied, and the concentration of samples from other periods was below than 20 ppb. Total runoff loss of captafol was below 0.1%. About 10 fold of dilution factor was observed at the merging point with stream near outlet from orchard and about 50 fold was observed at the next merging point which is located further down. Therefore, captafol will not harm the aquatic organisms due to dilution factor$(10{\sim}50\;fold)$ and rapid hydrolytic degradation rate even when it was run off into a stream nearby.

  • PDF

Analysis of an Actual Slope Failure in the Residual Soil by Suction Stress Based Effective Stress (흡수응력에 기반한 유효응력에 의한 실제 잔류토 사면 붕괴의 해석)

  • Oh, Seboong;Lu, Ning;Park, Young Mog;Lee, Junsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.113-120
    • /
    • 2012
  • An actual slope failure was analyzed in residual soils at Jinju. Due to rainfall infiltration, the safety factor decreases in the unsaturated layers, since the effective stress and shear strength decrease. In this study, the effective stress is based on suction stress using soil water retention curve. Unsaturated properties were evaluated on soil water retention curve, hydraulic conductivity and shear strength with samples from the site. After infiltration analysis of unsaturated flow under the actual rainfall, the distribution of pore water pressure could be calculated in the slope layers. In the stress field of finite elements, an elastic analysis calculated total stress distribution in the layers and also shear stresses on the slip surface using elastic model. On the slip surface, suction stress and effective stress evaluated the shear strength. As a result, the factor of safety was calculated due to rainfall, which could simulate the actual slope failure. In particular, it was found that the suction stress increases and both the effective stress and the shear strength decrease simultaneously on the slip surface.

Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration

  • Qi, Shunchao;Vanapalli, Sai K.;Yang, Xing-guo;Zhou, Jia-wen;Lu, Gong-da
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Shallow failures occur frequently in both engineered and natural slopes in expansive soils. Rainfall infiltration is the most predominant triggering factor that contributes to slope failures in both expansive soils and clayey soils. However, slope failures in expansive soils have some distinct characteristics in comparison to slopes in conventional clayey soils. They typically undergo shallow failures with gentle sliding retrogression characteristics. The shallow sliding mass near the slope surface is typically in a state of unsaturated condition and will exhibit significant volume changes with increasing water content during rainfall periods. Many other properties or characteristics change such as the shear strength, matric suction including stress distribution change with respect to depth and time. All these parameters have a significant contribution to the expansive soil slopes instability and are difficult to take into consideration in slope stability analysis using traditional slope stability analysis methods based on principles of saturated soil mechanics. In this paper, commercial software VADOSE/W that can account for climatic factors is used to predict variation of matric suction with respect to time for an expansive soil cut slope in China, which is reported in the literature. The variation of factor of safety with respect to time for this slope is computed using SLOPE/W by taking account of shear strength reduction associated with loss of matric suction extending state-of-the art understanding of the mechanics of unsaturated soils.

Characterization of Infiltration Analyses Using Long-Term Monitoring Flow Data (장기 모니터링 자료를 활용한 침입수 산정 방법론별 특성 분석)

  • Lee, Jaehyun;Kim, Insop;Oh, Jeill;Park, Chulhwi
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.411-418
    • /
    • 2009
  • The analysis of characteristics of water use evaluation and nighttime domestic flow evaluation was performed by using result from flow monitoring and surveying water supply records and nighttime domestic flow for a year. The analysis of correlations showed that, for both sites, the infiltration ratio and wastewater flow have shown a good relationship with high correlation factor and that the calculation of wastewater flow was highly affected by monthly rainfall depth as well as number of rain days. From this result, it was concluded that the measurement of infiltration should be performed when the rainfall does not significantly affect the sewer flow. Also, it is notable that each value of calculated using method for infiltration evaluation are not comparable to each other, but independent methods. In selecting of evaluation method for infiltration, therefore, a great emphasis should be imposed to the character of area and the seasonal factor in order to select optimal one. It is desirable way for evaluating infiltration and reduction ratio using result from an optimal method.

Vulnerability assessment of drought of small island areas in Korea (읍면 단위 도서지역의 가뭄 취약성 평가)

  • Shim, Intae;Hong, Bongchang;Kim, Eunju;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.341-351
    • /
    • 2019
  • The purpose of this study was to evaluate vulnerability of drought in small island areas. Vulnerability assessment factors of drought were selected by applying the factor analysis. Ninety Eup/Myon areas in small island were evaluated to vulnerability of drought by entropy method adapting objective weights. Vulnerability consisted of climate exposure, sensitivity, and adaptive capacity. A total of 22 indicators were used to evaluate and analyze vulnerability of drought in small island areas. The results of entropy method showed that winter rainfall, no rainfall days, agricultural population rate, cultivation area rate, water supply rate and groundwater capacity have a significant impact on drought assessment. The overall assessment of vulnerability indicated that Seodo-myeon Ganghwa-gun, Seolcheon-myeon Namhae-gun and Samsan-myeon Ganghwa-gun were the most vulnerable to drought. Especially Ganghwa-gun should be considered policy priority to establish drought measures in the future, because it has a high vulnerability of drought.

Risk Assessment of Slopes using Failure Probability in Korean Railways (파괴확률을 이용한 철도절개면의 위험도 평가)

  • Kim, Hyun-Ki;Kim, Soo-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.158-164
    • /
    • 2008
  • Abstract Infiltration of rainfall that may lead to reduce resistance force due to reduction of matric suction and to increase driving force due to increase of self weight makes the slope fail. There are many specifications to make slope stable based on factor of safety. Although result of slope stability analysis satisfy the specifications, slope failures triggered by rainfall are frequently occurred in reality because slope stability analysis cannot consider uncertainty of each soil properties. This is why conventional analysis has limitation and development of alternative method is needed. So it is suggested to adopt the reliability analysis rather than design based on factor of safety into designing safer structure. Through the evaluation of handicaps for the factor of safety based design, calculation of soil properties by site investigation, and reliability analysis considering distribution of each soil properties, distribution of failure probability in railway slope is obtained. Then, Risk assessment of slopes in Korean railway is executed from the results. Damage loss and incoming loss are considered as the loss. Using these results, it is possible to make proper countermeasure or efficient maintenance.