• Title/Summary/Keyword: Rainfall conditions

Search Result 717, Processing Time 0.028 seconds

Development of Rainfall Information Production Technology Using Optical Sensors (Estimation of Real-Time Rainfall Information Using Optima Rainfall Intensity Technique) (광학센서를 이용한 강우정보 생산기법 개발 (최적 강우강도 기법을 이용한 실시간 강우정보 산정))

  • Lee, Byung-Hyun;Kim, Byung-Sik;Lee, Young-Mi;Oh, Cheong-Hyeon;Choi, Jung-Ryel;Jun, Weon-Hyouk
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1101-1111
    • /
    • 2021
  • In this study, among the W-S-R(Wiper-Signal-Rainfall) relationship methods used to produce sensor-based rain information in real time, we sought to produce actual rainfall information by applying machine learning techniques to account for the effects of wiper operation. To this end, we used the gradient descent and threshold map methods for pre-processing the cumulative value of the difference before and after wiper operation by utilizing four sensitive channels for optical sensors which collected rain sensor data produced by five rain conditions in indoor artificial rainfall experiments. These methods produced rainfall information by calculating the average value of the threshold according to the rainfall conditions and channels, creating a threshold map corresponding to the 4 (channel) × 5 (considering rainfall information) grid and applying Optima Rainfall Intensity among the big data processing techniques. To verify these proposed results, the application was evaluated by comparing rainfall observations.

Simulation and validation of flash flood in the head-water catchments of the Geum river basin

  • Duong, Ngoc Tien;Kim, Jeong Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.138-138
    • /
    • 2021
  • Flash floods are one of the types of natural hazards which has severe consequences. Flash floods cause high mortality, about 5,000 deaths a year worldwide. Flash floods usually occur in mountainous areas in conditions where the soil is highly saturated and also when heavy rainfall happens in a short period of time. The magnitude of a flash flood depends on several natural and human factors, including: rainfall duration and intensity, antecedent soil moisture conditions, land cover, soil type, watershed characteristics, land use. Among these rainfall intensity and antecedent soil moisture, play the most important roles, respectively. Flash Flood Guidance is the amount of rainfall of a given duration over a small stream basin needed to create minor flooding (bank-full) conditions at the outlet of the stream basin. In this study, the Sejong University Rainfall-Runoff model (SURR model) was used to calculate soil moisture along with FFG in order to identify flash flood events for the Geum basin. The division of Geum river basin led to 177 head-water catchments, with an average of 38 km2. the soil moisture of head-water catchments is considered the same as sub-basin. The study has measured the threshold of flash flood generation by GIUH method. Finally, the flash flood events were used for verification of FFG. The results of the validation of seven past independent events of flash flood events are very satisfying.

  • PDF

Simulation of IWR Based on Different Climate Scenarios

  • Junaid, Ahmad Mirza;Arshad, M.;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.519-519
    • /
    • 2016
  • Upper Chenab Canal (UCC) is a non-perennial canal in Punjab Province of Pakistan which provides irrigation water only in summer season. Winter and summer are two distinct cropping season with an average rainfall of about 161 mm and 700 mm respectively. Wheat-rice is common crop rotation being followed in the UCC command area. During winter season, groundwater and rainfall are the main sources of irrigation while canal and ground water is used to fulfil the crop water requirements (CWR) during summer. The objective of current study is to estimate how the irrigation water requirements (IWR) of the two crops are going to change under different conditions of temperature and rainfall. For this purpose, 12 different climatic scenarios were designed by combining the assumptions of three levels of temperature increase under dry, normal and wet conditions of rainfall. Weather records of 13 years (2000-2012) were obtained from PMD (Pakistan Meteorological Department) and CROPWAT model was used to simulate the IWR of the crops under normal and scenarios based climatic conditions. Both crops showed a maximum increase in CWR for temperature rise of $+2^{\circ}C$ i.e. 8.69% and 6% as compared to average. Maximum increment (4.1% and 17.51% respectively) in IWR for both wheat and rice was recorded when temperature rise of $+2^{\circ}C$ is coupled with dry rainfall conditions. March & April during winter and August & September during summer were the months with maximum irrigation requirements. Analysis also showed that no irrigation is needed for rice crop during May and June because of enough rainfall in this area.

  • PDF

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.

Analysis of rainfall infiltration characteristics for unsaturated soils using a column test equipment (모형실험장치를 이용한 불포화토의 강우 침투특성 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.736-742
    • /
    • 2010
  • This study was conducted to characterize on the relationships of rainfall intensity and infiltration rate of rainfall dependent on unit weight change in the gneissic weathered soil by a column test equipment. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at regular time intervals. Rainfall conditions including continuous rainfall and repeated rainfall were selected in order to know the effect of antecedent rainfall. In the condition of rainfall intensity 20mm/h and the unit weights of soil as $1.35g/cm^3$, $1.55g/cm^3$ and $1.61g/cm^3$, average rainfall infiltration rate was $2.814{\times}10^{-3}cm/sec$, $1.969{\times}10^{-3}cm/sec$ and $1.252{\times}10^{-3}cm/sec$ respectively. The higher rainfall intensity and lower unit weight of soil, the faster average infiltration rate. Overflow in the column was happened except rainfall condition of rainfall intensity 20mm and soil unit weight $1.35g/cm^3$. Increasing the soil unit weight, overflowed water was increased and occurrence time was faster.

  • PDF

Correlations between variables related to slope during rainfall and factor of safety and displacement by coupling analysis

  • Jeong-Yeon Yu;Jong-Won Woo;Kyung-Nam Kang;Ki-Il Song
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-89
    • /
    • 2023
  • This study aims to establish the correlations between variables related to a slope during rainfall and factor of safety (FOS) and displacement using a coupling analysis method that is designed to consider both in rainfall conditions. With the recent development of measurement technologies, the approach of using the measurement data in the field has become easier. Particularly, they have been obtained in tests to determine the real-time safety and movement of a slope; however, a specific method has not been finalized. In addition, collected measurement data for recognizing the FOS and displacement in real-time with a specific relevance is difficult, and risks of uncertainty, such as in soil parameters and time, exist. In this study, the correlations between various slope-related variables (i.e., rainfall intensity, rainfall duration, angle of the slope, and mechanical properties including strength parameters of selected three types of soil; loamy sand, silt loam, sand) and the FOS and displacement are analyzed in order of seepage analysis, slope stability analysis and slope displacement analysis. Moreover, the methodology of coupling analysis is verified and a fundamental understanding of the factors that need to be considered in real-time observations is gained. The results show that the contributions of the abovementioned variables vary according to the soil type. Thus, the tendency of the displacement also differs by the soil type and variables but not same tendency with FOS. The friction angle and cohesion are negative while the rainfall duration and rainfall intensity are positive with the displacement. This suggests that understanding their correlations is necessary to determine the safety of a slope in real-time using displacement data. Additionally, databases considering rainfall conditions and a wide range of soil characteristics, including hydraulic and mechanical parameters, should be accumulated.

A Study on Management Criteria of Seepage for Fill Dams Considering Rainfall Effect (강수를 고려한 필댐 침투수량의 관리기준에 관한 연구)

  • Lee, Jongeun;Yoon, Sukmin;Im, Eun-Sang;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.5
    • /
    • pp.5-16
    • /
    • 2020
  • The purpose of this study is to suggest the management criteria through the decision tree analysis for a seepage, which is an important instrumentation type of the fill dam. In the case of the seepage of the dam in Korea, seepage can be increased rapidly because rainfall directly flow into the downstream slope and abutment of dam during rainfalls. Therefore, it is necessary the management criteria for the seepage of the fill dam in consideration of rainfall. In this study, decision tree analysis was performed for a fill dam in Korea by setting the seepage as the response variable and the rainfall and water level of dam as explanatory variables. As the study results, the water level acted as an explanatory variable from the conditions under daily rainfall of 34.75 mm/day, and the branch conditions of the water level were analyzed to be 37.4 m and 35.23 m. 98% of the rainfall data is distributed under the conditions of the daily rainfall of 34.75 mm/day, and coverage of the seepage is indicated from 13.25 L/min to 24.24 L/min. When the rainfall and water level as the influence factors for the seepage were selected, the influence of the rainfall was dominant. Finally, the seepage of fill dam by considering the rainfall and water level was suggested as a management criteria.

Failure Predict of Standard Sand Model Slope using Compact Rainfall Simulation (소형 인공강우 장치에 의한 표준사 모형사면의 붕괴 예측)

  • Moon, Hyo Jong;Kim, Dae Hong;Jeong, Ji Su;Lee, Seung Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.8 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • This study analyzes the failure predict of model slope due to changes in ground condition followed by heavy rainfall with a simulated rainfall system. the movement of a slope from the rainfall penetrating the unsaturated soil is investigated with respect to various conditions of pore-water pressure, earth pressure and moisture content, considering rainfall duration and permeability.

우리나라 주요지점에 있어서의 강우해석에 관한 수문통계학적 연구

  • 이원환
    • Water for future
    • /
    • v.5 no.2
    • /
    • pp.30-43
    • /
    • 1972
  • The paper describes on the hydrologic analysis of point rainfall data of the three major areas, such as in Seoul, Pusan and Taegu. Scheme of the paper is analyzed five research cases. Contents of the analysis are carried out five kinds of transformed variables for determination of rainfall distribution types and two kinds of reliability tests on unusual(extraordinary) values each rainfall durations:short durations, long durations, long durations, monthly and yearly. Rainfall depth probability had been computed methods of hydrologic amounts analysis namely logarithmic transformations or Gumbel-Chow method and so on, but in this paper it is calculated log xi, n-square root transformations by using normal distribution function and normalization of rainfall distributions is examined graphical tests and $X^2-test$(chi-square test). Furthermore, rainfall depth probability is calculated taking into account the safty factors of project life of hydraulic structures. We think it is advanced contents that considering priceless experiences, the life of structures, conditions and more problems of planning engineers and designers, proposed rainfall amounts(proposed values) are presented charts or figures.

  • PDF

A Study on the Modification Value for Estimation of Traveling Speed During Rainfall in Interrupted Traffic Flow (단속교통류에서 강우시 평균통행속도 산정을 위한 보정계수에 관한 연구)

  • Mo, Moo Ki;Lee, Seung Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.837-844
    • /
    • 2017
  • Generally, V/C ratio in uninterrupted traffic flow and average travel speed in interrupted traffic flow are utilized as measure of effect for assessing operational situation of roads. The set of road conditions and traffic conditions are considered to be major variables for assessing operational situation in the traffic flow. However, weather conditions such as rainfall also affect the operational situation of roads. The studies reflected by the rainy situation are conducted in the uninterrupted flow, but the related studies are insufficient in the interrupted flow. In this study, the modification factors during rainfall in the interrupted flow were suggested, and the factors could be used when calculating the average travel speed during rainfall in the interrupted flow. By utilizing the data that were investigated in the same road and traffic conditions and the different weather conditions (rainy day or clear day), the modification factors were founded on regression analysis of the travel speed during rainfall as a dependent variable. Modification factors was suggested in dividing peak time, non-peak time, and whole period. Based on this study, the modification factors can be used to complementing the average travel speed model for assessing the operational situation of urban streets during rainfall.