• Title/Summary/Keyword: Raim

Search Result 25, Processing Time 0.022 seconds

Development of a Sequential Algorithm for a GNSS-Based Multi-Sensor Vehicle Navigation System

  • Jeon, Chang-Wan;Jee, Gyu-In;Gerard Lachapelle
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-170
    • /
    • 2004
  • RAIM techniques based on TLS have rarely been addressed because TLS requires a great number of computations. In this paper, the particular form of the observation matrix H, is exploited so as to develop a new TLS-based sequential algorithm to identify an errant satellite. The algorithm allows us to enjoy the advantages of TLS with less computational burden. The proposed algorithm is verified through a numerical simulation.

RAIM - A MODEL FOR IODINE BEHAVIOR IN CONTAINMENT UNDER SEVERE ACCIDENT CONDITION

  • KIM, HAN-CHUL;CHO, YEONG-HUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.827-837
    • /
    • 2015
  • Following a severe accident in a nuclear power plant, iodine is a major contributor to the potential health risks for the public. Because the amount of iodine released largely depends on its volatility, iodine's behavior in containment has been extensively studied in international programs such as International Source Term Programme-Experimental Program on Iodine Chemistry under Radiation (EPICUR), Organization for Economic Co-operation and Development (OECD)-Behaviour of Iodine Project, and OECD-Source Term Evaluation and Mitigation. Korea Institute of Nuclear Safety (KINS) has joined these programs and is developing a simplified, stand-alone iodine chemistry model, RAIM (Radio-Active Iodine chemistry Model), based on the IMOD methodology and other previous studies. This model deals with chemical reactions associated with the formation and destruction of iodine species and surface reactions in the containment atmosphere and the sump in a simple manner. RAIM was applied to a simulation of four EPICUR tests and one Radioiodine Test Facility test, which were carried out in aqueous or gaseous phases. After analysis, the results show a trend of underestimation of organic and molecular iodine for the gas-phase experiments, the opposite of that for the aqueous-phase ones, whereas the total amount of volatile iodine species agrees well between the experiment and the analysis result.

A New TLS-Based Sequential Algorithm to Identify Two Failed Satellites

  • Jeon Chang-Wan;Lachapelle Gerard
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.166-172
    • /
    • 2005
  • With the development of RAIM techniques for single failure, increasing interest has been shown in the multiple failure problem. As a result, numerous approaches have been used in attempts to tackle this problem. This paper considers the two failure problem with total least squares (TLS) technique, a solution that has rarely been addressed because TLS requires an immense number of computations. In this paper, the special form of the observation matrix H, (that is, one column is exactly known) is exploited so as to develop an algorithm in a sequential form, thereby reducing computational load. The algorithm permits the advantages of TLS without the excessive computational burden. The proposed algorithm is verified through a numerical simulation.

A New TLS-Based Sequential Algorithm to Identify Two Failed Satellites

  • Jeon, Chang-Wan;Lachapelle, Gerard
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2627-2631
    • /
    • 2003
  • With the development of RAIM techniques for single failure, there has been increasing interest in the multiple failure problem. There have been many approaches to tackle the problem from various points of view. This paper approaches to two failure problem with total least squares (TLS) technique, which has rarely been addressed because TLS requires a great number of computations. In this paper, the special form of the observation matrix H, that is, one column is exactly known, is exploited so as to develop an algorithm in a sequential form, which reduces computational burden. The algorithm makes us enjoy the advantages of TLS without much computational burden. The proposed algorithm is verified through a numerical simulation.

  • PDF

Required Navigation Performance Implementation of Mission Equipment Package for Korean Utility Helicopter (한국형 가동헬기 임무탑재장비 요구항법성능 구현)

  • Kim, Sung-Woo;Lee, Byoung-Hwa;Oh, Woo-Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.798-804
    • /
    • 2011
  • A number of navigation improvements are envisaged : Differential GPS - WAAS, LAAS, and Performance Based Navigation. The GPS receiver verifies the integrity(usability) of the signals received from the GPS constellation through a process called receiver autonomous integrity monitoring(RAIM) to determine if a satellite is providing corrupted information. This paper describe the RAIM function and Performance-Based Navigation implementation of Mission Equipment Package(MEP) for Korean Utility Helicopter.

A GPS Positioning and Receiver Autonomous Integrity Monitoring Algorithm Considering SA Fade Away (고의잡음의 제거를 고려한 GPS항법 및 무결성 검정알고리즘)

  • Choi, Jae-Youl;Park, Soon;Park, Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.425-433
    • /
    • 2002
  • After the removal of SA (Selective Availability), horizontal accuracy of 25m(2dRMS) is easily obtained using GPS (Global Positioning System). In this paper, the error characteristics without SA are analyzed and a navigation algorithm concerns this error characteristics is proposed to further improve the accuracy. The proposed method utilizes the relationship between elevation angle and errors that are remained after ionospheric and troposheric delay compensation. The relationship is derived from real measurements and used as a weighting matrix of weighted least squares estimator. Furthermore, a RAIM (Receiver Autonomous Integrity Monitoring) technique is included to remove abnormal measurements affected by multi-path or low SNR (Signal-to-Noise Ratio). It is shown that using the proposed method, more than 4 times accurate result, which is comparable with DGPS (Differential GPS), can be obtained from experiments with real data. Besides accuracy and reliability, the proposed method reduces large jumps in position and maintains better performance than a method using mask angle to completely remove satellites below this mask angle. Thus it is expected that the proposed method can be efficiently applied to land navigation where some satellites are blocked by building or forest.

Performance Comparison of Anti-Spoofing Methods using Pseudorange Measurements (의사거리 측정치를 이용하는 기만신호 검출 기법의 성능 비교)

  • Cho, Sung-Lyong;Shin, Mi-Young;Lee, Sang-Jeong;Park, Chan-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.793-800
    • /
    • 2010
  • GPS spoofing is an intentional interference which uses the mimic GPS signals to fake the receivers. The generic GPS receiver is hard to recognize the spoofing signal because the spoofer generates the fake signals as close as possible to the GPS signal. So the spoofer can do critical damage to public operations. This paper introduces a basic concept of spoofing and analyzes the effect of the spoofing signal to the GPS receiver. Also for stand-alone GPS receivers, two anti-spoofing methods are implemented : RAIM based method and the SQM based method. To evaluate the performance of anti-spoofing method, the software based spoofing signal generator and GPS signal generator are implemented. The performance of the anti-spoofing methods obtained using the output of the software based GPS receiver shows that SQM based method is more effective when multiple spoofing signals exist.

Along-Track Position Error Bound Estimation using Kalman Filter-Based RAIM for UAV Geofencing

  • Gihun, Nam;Junsoo, Kim;Dongchan, Min;Jiyun, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Geofencing supports unmanned aerial vehicle (UAV) operation by defining stay-in and stay-out regions. National Aeronautics and Space Administration (NASA) has developed a prototype of the geofencing function, SAFEGUARD, which prevents stayout region violation by utilizing position estimates. Thus, SAFEGUARD depends on navigation system performance, and the safety risk associated with the navigation system uncertainty should be considered. This study presents a methodology to compute the safety risk assessment-based along-track position error bound under nominal and Global Navigation Satellite Systems (GNSS) failure conditions. A Kalman filter system using pseudorange measurements as well as pseudorange rate measurements is considered for determining the position uncertainty induced by velocity uncertainty. The worst case pseudorange and pseudorange rate fault-based position error bound under the GNSS failure condition are derived by applying a Receiver Autonomous Integrity Monitor (RAIM). Position error bound simulations are also conducted for different GNSS fault hypotheses and constellation conditions with a GNSS/INS integrated navigation system. The results show that the proposed along-track position error bounds depend on satellite geometries caused by UAV attitude change and are reduced to about 40% of those of the single constellation case when using the dual constellation.

Fast Analysis of Fractal Antenna by Using FMM (FMM에 의한 프랙탈 안테나 고속 해석)

  • Kim, Yo-Sik;Lee, Kwang-Jae;Kim, Kun-Woo;Oh, Kyung-Hyun;Lee, Taek-Kyung;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.121-129
    • /
    • 2008
  • In this paper, we present a fast analysis of multilayer microstrip fractal structure by using the fast multipole method (FMM). In the analysis, accurate spatial green's functions from the real-axis integration method(RAIM) are employed to solve the mixed potential integral equation(MPIE) with FMM algorithm. MoM's iteration and memory requirement is $O(N^2)$ in case of calculation using the green function. the problem is the unknown number N can be extremely large for calculation of large scale objects and high accuracy. To improve these problem is fast algorithm FMM. FMM use the addition theorem of green function. So, it reduce the complexity of a matrix-vector multiplication and reduce the cost of calculation to the order of $O(N^{1.5})$, The efficiency is proved from comparing calculation results of the moment method and Fast algorithm.

Application of GNSS Non-Precision and Precision Approaches to a Circle-to-Land Approach Airport (선회착륙공항에서의 GNSS 비정밀접근 및 정밀접근 적용 연구)

  • Kim, Y.M.;Kang, J.Y.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.3
    • /
    • pp.65-85
    • /
    • 2004
  • Circling to land is a relatively dangerous maneuver. It contains the worst elements of IFR flight. There is a minimum obstruction clearance, a limited space in which to maneuver, an absence of visual reference, and trying to keep the runway in sight while preparing to land. At night it is quite a bit more than dangerous. The required continuous turn in marginal conditions that keeps the airport in sight is hazardous. Therefore, this paper proposes an application of GNSS to circling approach to reduce or remove chances of accidents which may occur under such unfavorable flight conditions. The study reviews relevant documents published by ICAO and FAA and provides scenarios for non-precision and precision approaches and circling approach based on the GNSS for Kimhae airport. Also requirements for the ground facility design are studied and provided.

  • PDF