• Title/Summary/Keyword: Railway noise source

Search Result 95, Processing Time 0.035 seconds

Study on the Noise Source Modeling and the Source Strength Estimation of Mugungwha Trains Running on the Conventional Railway (기존선을 주행하는 무궁화호 열차의 소음원 모델링과 음향강도 평가에 관한 연구)

  • Jang, Seungho;Jang, Eunhye
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.1020-1026
    • /
    • 2013
  • An accurate railway environmental noise prediction model is required to make the proper solution of the railway noise problems. In this paper, an engineering model for predicting the noise of conventional passenger cars is presented considering the acoustic source strength in octave-band frequencies and the propagation over grounds with varying surface properties. Since the formation of a train can be variable, the source strength of each locomotive and passenger car was estimated by measuring the pass-by noise and analysing the wheel-rail rolling noise. Some validation cases show on the average small differences between the predictions of the present model and the measurement results.

Investigation of Source Modelling for External Noise Prediction of Railway Vehicles (철도차량 외부소음 예측을 위한 음원모델에 관한 고찰)

  • Kim, Jong-Nyeun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1069-1077
    • /
    • 2009
  • For external noise prediction of railway vehicles, sophisticated individual source modelling as well as appropriate noise propagation model from the sources is necessary to ensure the accuracy of the predicted results and contributions of each equipment to the overall noise levels. Accurate and reasonable identification procedures of sound sources of equipment including source strength, directivity and positions installed in the train play an important role in a prediction model, since it is not easy to establish a simple model for the sources with a single rule due to the complexity of source characteristics of equipment in size and directivity pattern. This paper guidelines practical considerations for identification of noise sources in railway vehicles including typical source characteristics of several sub-systems that emits noise to the environment, particularly for electric multiple unit(EMU), and verify effectiveness of assumptions used in the modelling of equipment by measurement with a simple part. The predicted external noise level of a complete train using Exnoise, which was developed by Hyundai-Rotem and has been verified in the a lot of field-tests, incorporating source modelling considered in this paper shows close correlation with the measured ones.

  • PDF

The Verification on Effect of Sound Absorption Tunnel for Elevated Railway (고가철교 방음터널 효과검증)

  • Kim, Hyung-Doo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.122-127
    • /
    • 2008
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

Prediction of the Environmental Noise Level of Railway Cars Crossing a Concrete Bridge (콘크리트교를 지나는 철도 차량의 환경 소음 예측 연구)

  • Jang, Seungho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.52-59
    • /
    • 2015
  • In the conventional model for the prediction of the railway environmental noise, one used an empirical formula of the total noise level at specific distances. Only a function of the distance to the source was also used to calculate the noise level near the railway bridges. However, the noise varies depending on the position of the receiver as well as the distance from the source especially at concrete bridges. In this paper, a noise propagation model in the railway concrete bridge was derived by considering the diffraction at the bridge deck and the ground effect and applying the ISO 9613-2 noise propagation model. We compared the predicted and measured values of environmental noise at a high-speed railway bridge, and it was confirmed that this prediction model gives relatively small errors.

A Tendency of Prediction Technique for the Assessment of Railway Noise (철도소음 영향평가를 위한 예측기술 동향)

  • Cho, Jun-Ho;Park, Young-Min;Sun, Hyo-Sung;Hong, Woong-Gi
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.99-105
    • /
    • 2007
  • Since 1990s, the railway noise has been researched and developed in our nation. First of all, what's causing the noise and how to eliminate the cause of the noise must be found out. Secondly, cutting off the propagation path of the noise from the noise source to the receiving points. In this study the characteristics of prediction formula for the assessment of railway noise used in some nations including Korea were investigated. In order to develop the prediction formula of the railway noise, the noise radiated from railway vehicle, rails and sleepers, characteristics of noise barrier, velocity of train, ground effects, roughness should be analyzed and predicted. Especially, on the basis of acoustics, the characteristics of source are applied to acoustic power and directivity information.

Noise Source Identification of the Design Elements of the Driving Gear for the Urban Railway (도시철도용 구동기어의 설계 요소에 대한 소음 기여도 분석)

  • Kim, Kinam;Lee, Hyuncheol;Sun, Chanwoong;Lee, Sungwook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.7
    • /
    • pp.470-480
    • /
    • 2015
  • As the railway noise guideline of the Ministry of Environment after 2017 is strictly enforced, the noise level at stationary condition of urban railway is demanding the reduction about 2 dB(A). And the noise level at running condition is reduced by 6 dB(A) at 80 km/h. Therefore, the devices that causes noise shall arrange for the improvement plan of noise reduction for each device. In this paper, we carried out a technical review of the driving gear used to drive the vehicle from a variety of noise-induced equipment of a urban railway. Analyze the causes of the current noise levels and noise cause about the driving gear used in current urban railway and this study analyzes the noise level and noise cause the drive gear being used in the current urban railway. Finally, in this paper proposes a scheme for reducing the noise that can be designed to reduce the noise with considering the noise cause analysis.

The Verification on Effect of Sound Absorption Tunnel for Elevated Railway in Cholla Line (전라선 고가교 방음터널 효과검증)

  • Kim, Byoung-Sam;Lee, Tae-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.667-672
    • /
    • 2007
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

  • PDF

A Study on the Pediction of Train Noise Propagation From an Elvated Railway (고가선로에서 철도소음 전파예측에 관한 연구)

  • 주진수
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.289-296
    • /
    • 1998
  • To predict the noise propagation from an elevated railway, sound radiation characteristics of elevated structure are measured by using the sound intensity method. In the base of the results, we propose the source model of elevated structure noise and the calculation model for elevated railway noise. Acoustic model of the former is modeled a row of single sources with directivity cos .theta. positioned in the center of a bogie and arranged in the lower side of slabs. Also prediction model is presented with rolling noise and elevated structure noise calculated by considering the power level of a source for one-third octave band, ground absorption and barrier deflection. Noise level unit patterns of a passing train is calculated based on this model and the results are compared with available field data.

  • PDF

Study on the prediction model of environmental noise from the conventional railway passenger cars (기존선 여객열차의 환경소음 예측모델 연구)

  • Jang, Seungho;Jang, Eunhae;Son, Jung Gon;Park, Byoungju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.564-569
    • /
    • 2013
  • An accurate railway environmental noise prediction model is required to make the proper solution of the railway noise problems. In this paper, an engineering model for predicting the noise of conventional passenger cars is presented considering the acoustic source strength in octave-band frequencies and the propagation over grounds with varying surface properties. Since the formation of a train can be variable, the source strength of each locomotive and passenger car was estimated by measuring the pass-by noise and analysing the wheel-rail rolling noise. Some validation cases show on the average small differences between the predictions of the present model and the measurement results.

  • PDF

Counter Plan for Reduction of Elevated Railway Bridge Noise (고가교 철도소음 저감을 위한 대책수립)

  • Kim, Byoung-Sam;Lee, Tae-Keun;Han, Sung-Ik;Yeo, Dae-Yeon;Kim, Hyung-Doo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.6-12
    • /
    • 2010
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

  • PDF