• Title/Summary/Keyword: Railway derailment coefficient

Search Result 74, Processing Time 0.019 seconds

A Safety Assessment and Vibration Characteristics of Railway Vehicle Passing Curves (곡선부 통과 차량의 진동특성 및 안전성 평가)

  • Park, Kwang-Soo;Lee, Seung-Il;Lee, Hi-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.993-1001
    • /
    • 2007
  • An analysis model has been developed to assess running safety of railway vehicle passing curves. By using ADAMS/Rail, a computer analysis has been conducted by changing various parameters according to the track conditions. Analysis results show as follows: A derailment coefficient of left wheel was increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A unload rate of left wheel was also increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A wear number of left wheel was increased according to increase of cant at all speed, but only at 35 m/s, it was decreased as increase of cant. A friction coefficient of left wheel was Increased according to increase of cant at all speed, but only at 35 m/s. it was decreased as increase of cant.

Evaluation of critical speed & running performance for Swing Motion Bogie (스웡모션보기의 임계속도와 주행성능 평가)

  • 함영삼;허현무;오택열
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.892-897
    • /
    • 2002
  • The research was requested by Meridian Rail Corporation in United States. The Swing Motion Bogie can application by Korea style if synthesize study result of bogie strength evaluation, bogie dynamic characteristics analysis, actual test(maximum speed, derailment coefficient, lateral force, vertical force, vibration acceleration, steady state lateral acceleration) etc..

  • PDF

A Study on the Optimum Design of Rail Vehicle Suspension Characteristics (철도차량 현가특성의 최적설계에 관한 연구)

  • 조동현;임진수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.413-420
    • /
    • 1998
  • In this study, optimum design methodology for rail vehicle suspension characteristics is suggested. Three parameters, primary lateral/longitunal stiffness and secondary lateral stiffness, are selected as design parameters. critical speed, suspension stroke trade-off and derailment coefficient are selectee as performance constraints. The optimum parameters to maximize ride quality are evaluated under the constraints. Steady-state curiving model to be able to evaluate derailment coefficient is developed. The combined design procedure is developed to evaluate Three parameters at the same time.

  • PDF

Running Safety Analysis of Railway Vehicle depending on Rail Inclination Change on Actual Track of Subway Line No.3 in Seoul (3호선 실제선로 조건에서의 레일경좌 변화에 따른 철도차량 주행안전성 해석)

  • Kim, Tae Geon;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.130-135
    • /
    • 2016
  • It is very hard to analyze the train derailment safety quantitatively at the curved section because of the diversified affect parameters including the complex interaction between wheel and rail, the train conditions such as the shape of wheel, suspension system, the track conditions such as the radius of curve, cant, transition curve, and the operation conditions, etc. Two major factors related to the running safety of railway vehicle are classified as the railway vehicle and the track condition. In this study, when the railway vehicle passing through curves of actual track condition of subway line NO.3 in seoul ($Yeonsinnae{\leftrightarrow}Gupabal$), the effect that has influence on running safety depending on rail inclination. The analysis result of 1/40 rail inclination condition is more favorable on running safety than other rail inclination conditions because derailment coefficient and wheel unloading ratio are the lowest.

A Parametric Studies to the Wheel Climb Derailment on the Curved track (곡선부 주행 중 타오름 탈선의 매개변수 연구)

  • Mok, Jin-Yong;Lee, Seung-Il;Lee, Hi-Sung;Hwang, Jeong-Taek
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.72-79
    • /
    • 2006
  • Derailment is likely to have a direct connection with human life and must be eliminated. A traveling safety evaluation method based mainly on derailment coefficient has already established. But this method is very difficult because Derailment is caused by multiple factors. To evaluate the derailment factor of running train that runs on the curved track, we make use of mechanism that wheel loads and lateral forces were affected by track and rolling stock parameter. In this paper, deal with a search on the parameter and derailment factor. According to results of computer simulation value of Q/P, running safety is connected with operation velocity, curve radius, cant, track irregularity, suspension stiffness and static wheel load ratio, etc.

  • PDF

The Derailment Safety Estimation of DMT Freight for Real Track Condition (실제 선로조건에 따른 DMT 화차의 탈선안전도 평가)

  • Lee, Jong-Seong;Eom, Beom-Gyu;Lee, Seung-Il;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.830-835
    • /
    • 2011
  • DMT Freight is judged that economic performance is good because can increase cargoes than existing freight. However, the existing freight cars, each with a different balance to the body structure is bogie because the vibrations may occur. Thus, by minimizing vibration over the existing freight securing the safety of the driving if you will not have major problems in cargoes. In this study, multi-body dynamic analysis tool, VI-Rail using the actually Gyeongbu Railroad line and an empty, full freight condition include curve radius, track irregularity, cent. DMT freight of the derailed wagons were assessed for safety analysis. Full and empty freight conditions for parity in the Gyeongbu Railroad line(Dongdaegoo ${\leftrightarrow}$Gyungsan) derailment safety analysis, such as derailment safety coefficient and the radius wheel road decrement, echoing the curve and the orbit is affected by the irregularity was found. Full freight condition than the empty conditions showed a significant derailment safety. Overall, the limits of derailment coefficient (Q/P=0.8) and wheel road decrement limits (${\Delta}P/P=0.6$) is less safe with me confirmed that the derailment safety.

  • PDF

The Derailment Safety Estimation of DMT Freight for Real Track Condition (실제 선로조건에 따른 DMT 화차의 탈선안전도 평가)

  • Son, Myoung-Sun;Eom, Beom-Gyu;Lee, Hi-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.637-642
    • /
    • 2011
  • The DMT freight is judged that economic performance is good because can increase cargoes than existing freight. However, the existing freight cars, each with a different balance to the body structure is bogie because the vibrations may occur. Thus, by minimizing vibration over the existing freight securing the safety of the driving if you will not have major problems in cargoes. In this study, multi-body dynamic analysis tool, VI-Rail using the actually Gyeongbu Railroad line and an empty, full freight condition include curve radius, track irregularity, The DMT freight of the derailed wagons were assessed for safety analysis. Full and empty freight conditions for parity in the Gyeongbu Railroad line(Dongdaegoo${\leftrightarrow}$Kyungsan) derailment safety analysis, such as derailment coefficient and the wheel unloaded, echoing the curve and the orbit is affected by the irregularity was found. Full freight condition than the empty conditions showed a significant derailment safety. Overall, the limits of derailment coefficient(Q/P = 0.8) and wheel unload decrement limits(${\triangle}P/P$ = 0.6) is less safe with me confirmed that the derailment safety.

A Study on Derailment Safety Analysis in a Conventional Line (Dongdaegoo-Namsunghyun) (기존선 구간(동대구-남성현)에서의 탈선안전도 해석 연구)

  • Kim, Yong-Won;Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.941-949
    • /
    • 2011
  • When a railway vehicle passes through curves & transitions, the running speed must be improved by setting limits on the maximum running speed in each section of the conventional line(Dongdaegoo-Namsunghyun) considering derailment safety. Our goal is to improve the maximum running speed of railway vehicle that passes through curves & transitions where there is a high risk of derailment. We examined the influence on the derailment safety when the railway vehicle passes through curves of actual track conditions (Dongdaegoo-Namsunghyun up and down lines). We performed the derailment safety analysis by increasing the running speed on curve radius by 5%.20% compared to existing speed under actual track conditions.

Analysis of Influence on Derailment due to Primary Spring Aging (축상스프링 노화에 따른 탈선안전도 영향 분석)

  • Hur, Hyunmoo;Shin, Yujeong;You, Wonhee;Park, Joonhyuk
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.320-328
    • /
    • 2017
  • In order to analyze the influence on derailment safety according to the aging of primary rubber springs widely applied to railway vehicles, characteristic tests were carried out on aged primary rubber spring samples. To analyze the effect of primary rubber spring aging on derailment safety, a vehicle dynamic analysis was carried out. The results of the vertical characteristics test for the rubber spring specimens with 17 years of service life revealed that the displacement restoration function was degraded due to rubber aging and the spring stiffness significantly increased. The results of the running dynamic analysis simulating the twist track running in accordance with the EN14363 standard, compared with the normal vehicle model (Case 1), showed that the derailment coefficient and the wheel unloading of the vehicle model (Case 2) using the aging primary spring characteristic increased, and the derailment safety was degraded. IN particular, it was found that the derailment safety due to the reduction of the wheel load is weak in the transient section where a steep slope change occurs.

New Lateral Force Measurement Method of the Wheel Plate for Railway Vehicles (철도차량용 차륜 플레이트에서의 새로운 횡압 계측방법)

  • Ham, Young-Sam;Jun, Hyun-Kyu;Seo, Jung-Won;Lee, Dong-Hyong;Kwon, Seok-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.621-625
    • /
    • 2012
  • Conventionally, to measure derailment coefficient of a railway wheel, strain gauges for lateral force measurement are attached to both side of the wheel. But narrow gap between railway wheel and traction motor makes it difficult to attache the strain gauges at the inner side of wheel. In this study, to overcome the hard accessibility to the strain gauge points by narrow gap, a new Wheatstone bridge connection method is presented by attaching all the strain gauges at the outer side of wheel with a new bridge connection. We evaluate the running safety of railway vehicles in accordance with railway safety regulations. The experimental results obtained shows higher sensitivity than conventional methods and the derailment coefficient measurement procedure becomes simpler.